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Abstract

Human conversation is inherently com-
plex, often spanning many different top-
ics/domains. This makes policy learn-
ing for dialogue systems very challeng-
ing. Standard flat reinforcement learning
methods do not provide an efficient frame-
work for modelling such dialogues. In
this paper, we focus on the under-explored
problem of multi-domain dialogue man-
agement. First, we propose a new method
for hierarchical reinforcement learning us-
ing the option framework. Next, we show
that the proposed architecture learns faster
and arrives at a better policy than the exist-
ing flat ones do. Moreover, we show how
pretrained policies can be adapted to more
complex systems with an additional set of
new actions. In doing that, we show that
our approach has the potential to facilitate
policy optimisation for more sophisticated
multi-domain dialogue systems.

1 Introduction

The statistical approach to dialogue modelling has
proven to be an effective way of building conver-
sational agents capable of providing required in-
formation to the user (Williams and Young, 2007;
Young et al., 2013). Spoken dialogue systems
(SDS) usually consist of various statistical com-
ponents, dialogue management being the central
one. Optimising dialogue management can be
seen as a planning problem and is normally tack-
led using reinforcement learning (RL). Many ap-
proaches to policy management over single do-
mains have been proposed over the last years with
ability to learn from scratch (Fatemi et al., 2016;
Gašić and Young, 2014; Su et al., 2016; Williams
and Zweig, 2016).

The goal of this work is to propose a coherent
framework for a system capable of managing con-

versations over multiple dialogue domains. Re-
cently, a number of frameworks were proposed
for handling multi-domain dialogue as multiple
independent single-domain sub-dialogues (Lison,
2011; Wang et al., 2014; Mrkšić et al., 2015; Gašić
et al., 2015). Cuayáhuitl et al. (2016) proposed a
network of deep Q-networks with an SVM classi-
fier for domain selection. However, such frame-
works do not scale to modelling complex con-
versations over large state/action spaces, as they
do not facilitate conditional training over multi-
ple domains. This inhibits their performance, as
domains often share sub-tasks where decisions in
one domain influence learning in the other ones.

In this paper, we apply hierarchical reinforce-
ment learning (HRL) (Barto and Mahadevan,
2003) to dialogue management over complex di-
alogue domains. Our system learns how to han-
dle complex dialogues by learning a multi-domain
policy over different domains that operate on inde-
pendent time-scales with temporally-extended ac-
tions.

HRL gives a principled way for learning poli-
cies over complex problems. It overcomes the
curse of dimensionality which plagues the major-
ity of complex tasks by reducing them to a se-
quence of sub-tasks. It also provides a learning
framework for managing those sub-tasks at the
same time (Dietterich, 2000; Sutton et al., 1999b;
Bacon et al., 2017).

Even though the first work on HRL dates back
to the 1970s, its usefulness for dialogue manage-
ment is relatively under-explored. A notable ex-
ception is the work of Cuayáhuitl (2009; 2010),
whose method is based on the MAXQ algorithm
(Dietterich, 2000) making use of hierarchical ab-
stract machines (Parr and Russell, 1998). The
main limitation of this work comes from the tab-
ular approach which prevents the efficient approx-
imation of the state space and the objective func-
tion. This is crucial for scalability of spoken dia-
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logue systems to more complex scenarios. Parallel
to our work, Peng et al. (2017) proposed another
HRL approach, using deep Q-networks as an ap-
proximator. In separate work, we found deep Q-
networks to be unstable (Su et al., 2017); in this
work, we focus on more robust estimators.

The contributions of this paper are threefold.
First, we adapt and validate the option framework
(Sutton et al., 1999b) for a multi-domain dialogue
system. Second, we demonstrate that hierarchi-
cal learning for dialogue systems works well with
function approximation using the GPSARSA al-
gorithm. We chose the Gaussian process as the
function approximator as it provides uncertainty
estimates which can be used to speed up learning
and achieve more robust performance. Third, we
show that independently pre-trained domains can
be easily integrated into the system and adapted to
handle more complex conversations.

2 Hierarchical Reinforcement Learning

Dialogue management can be seen as a control
problem: it estimates a distribution over possible
user requests – belief states, and chooses what to
say back to the user, i.e. which actions to take to
maximise positive user feedback – the reward.

Reinforcement Learning The framework de-
scribed above can be analyzed from the per-
spective of the Markov Decision Process (MDP).
We can apply RL to our problem where we
parametrize an optimal policy π : B×A → [0, 1].
The learning procedure can either directly look for
the optimal policy (Sutton et al., 1999a) or model
the Q-value function (Sutton and Barto, 1999):

Qπ(b, a) = Eπ{
T−t∑
k=0

γkrt+k|bt = b, at = a},

where rt is the reward at time t and 0 < γ ≤ 1
is the discount factor. Both approaches proved to
be an effective and robust way of training dialogue
systems online in interaction with real users (Gašić
et al., 2011; Williams and Zweig, 2016).

Gaussian Processes in RL Gaussian Process
RL (GPRL) is one of the state-of-the-art RL algo-
rithms for dialogue modelling (Gašić and Young,
2014) where theQ-value function is approximated
using Gaussian processes with a zero mean and
chosen kernel function k(·, ·), i.e.

Q(b, a) ∼ GP (0, k((b, a), (b, a))) .

Figure 1: Comparison of two analysed architec-
tures.

Gaussian processes follow a pure Bayesian frame-
work, which allows one to obtain the posterior
given a new collected pair (b, a). The trade-off be-
tween exploration and exploitation is handled nat-
urally as given belief state b at the time t we can
sample from posterior Q(b, a) over set of avail-
able actions A to choose the action with the high-
est sampled Q-value.

Hierarchical Policy Standard flat models where
a single Markov Decision Process is responsible
for solving multi-task problems have proven to be
inefficient. These models have trouble overcom-
ing the cold start problem and/or suffer from the
curse of dimensionality (Barto and Mahadevan,
2003). This pattern was also observed with state-
of-the-art models proposed recently (Mnih et al.,
2013; Duan et al., 2016).

To overcome this issue, many frameworks have
been proposed in the literature (Fikes et al., 1972;
Laird et al., 1986; Parr and Russell, 1998). They
make use of hierarchical control architectures and
learning algorithms whereby specifying a hierar-
chy of tasks and reusing parts of the state space
across many sub-tasks can greatly improve both
learning speed and agent performance.

The key idea is the notion of temporal abstrac-
tion (Sutton et al., 1999b) where decisions at the
given level are not required at each step but can
call temporally-extended sub-tasks with their own
policies.

The Option Framework One of the most nat-
ural generalisations of flat RL methods to com-
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plex tasks and easily interchangeable with prim-
itive actions is the option model (Sutton et al.,
1999b). The option is a generalisation of a single-
step action that might span across more than
one time-step and can be used as a standard ac-
tion.From mathematical perspective option is a tu-
ple 〈π, β, I〉 that consists of policy π : S × A →
[0, 1] which conducts the option, stochastic termi-
nation condition β : S → [0, 1] and an input set
I ⊆ S which specifies when the option is avail-
able.

As we consider hierarchical architectures with
temporally extended activities, we have to gener-
alise the MDP to the semi-Markov Decision Pro-
cess (SMDP) (Parr and Russell, 1998) where ac-
tions can take a variable amount of time to com-
plete. This creates a division between primitive
actions that span over only one action (and can be
seen as a classic reinforcement learning approach)
and composite actions (options) that involve an ex-
ecution of a sequence of primitive actions. This
introduces a policy µ over options that selects op-
tion o in state s with probability µ(s, o), o′s pol-
icy might in turn select other options until o ter-
minates and so on. The value function for op-
tion policies can be defined in terms of the value
functions of the semi-Markov flat policies (Sutton
et al., 1999b). Define the value function under a
semi-Markov flat policy as:

V π(s) = E{rt+1 + γrt+2 + ...|E(π, s, t)},

where E(π, s, t) is the event of π being initiated
at time t in s. The value function for the policy
over options µ can be defined as the value func-
tion for corresponding flat policy. This means we
can apply off-the-shelf RL methods in HRL using
different time-scales.

3 Hierarchical Policy Management

We propose a multi-domain dialogue system with
a pre-imposed hierarchy that uses the option
framework for learning an optimal policy. The
user starts a conversation in one of the master do-
mains and switches to the other domains (having
satisfied his/her goal) that are seen by the model
as sub-domains. To model individual policies, we
can use any RL algorithm. In separate work, we
found deep RL models performing worse in noisy
environment (Su et al., 2017). Thus, we employ
the GPSARSA model from section 2 which proves
to handle efficiently noise in the environment. The

Algorithm 1 Hierarchical GPRL
1: Initialize dictionary sets DM,DS and policies πM, πS

for master and sub-domains accordingly
2: for episode=1:N do
3: Start dialogue and obtain initial state b
4: while b is not terminal do
5: Choose action a according to πm

6: if a is primitive then
7: Execute a and obtain next state b′

8: Obtain extrinsic reward re

9: else
10: Switch to chosen sub-domain
11: while b is not terminal or a terminates do
12: Choose action a according to πs

13: Obtain next state b′

14: Obtain intrinsic reward ri

15: Store transition in Ds

16: b← b′

17: Store transition in Dm

18: b← b′

19: Update parameters with Dm,Ds

system is trained from scratch where the system
has to learn appropriate policy using both primi-
tive and temporally extended actions.

We consider two task-oriented master domains
providing restaurant and hotel information for the
Cambridge (UK) area. Having found the desired
entity, the user can then book it for a specified
amount of time or pay for it. The two domains
have a set of primitive actions (such as request,
confirm or inform (Ultes et al., 2017)) and a set
of composite actions (e.g., book, pay) which call
sub-domains shared between them.

The Booking and Payment domains were
created in a similar fashion: the user wants to re-
serve a table in a restaurant or a room in a hotel
for a specific amount of money or duration of time.
The system’s role is to determine whether it is pos-
sible to make the requested booking. The sub-
domains operates only on primitive actions and it’s
learnt following standard RL framework.

Figure 1 shows the analysed architecture: the
Booking and Payment tasks/sub-domains are
shared between two master domains. This means
we can train general policies for those sub-tasks
that adapt to the current dialogue given the infor-
mation passed to them by the master domains.

Learning proceeds on two different time-scales.
Following (Dietterich, 2000; Kulkarni et al.,
2016), we use pseudo-rewards to train sub-
domains using an internal critic which assesses
whether the sub-goal has been reached.

The master domains are trained using the re-
ward signal from the environment. If a one-step
option (i.e., a primitive action) is chosen, we ob-
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Figure 2: Learning curves for flat and the hierar-
chical reinforcement learning models.

tain immediate extrinsic reward while for the com-
posite actions the master domain waits until the
sub-domain terminates and the cumulative reward
information is passed back to the master domain.
The pseudo-code for the learning algorithm is
given in Algorithm 1.

4 Experiments

The PyDial dialogue modelling tool-kit (Ultes
et al., 2017) was used to evaluate the proposed ar-
chitecture. The restaurant domain consists of ap-
proximately 100 venues with 3 search constraint
slots while the hotel domain has 33 entities with
5 properties. There are 5 slots in the booking do-
main that the system can ask for while the payment
domain has 3 search constraints slots.

In the case of the flat approach, each master do-
main was combined with the sub-domains, result-
ing in 11 and 13 requestable slots for the restau-
rants and hotel domains, respectively.

The input for all models was the full belief state
b, which expresses the distribution over the user
intents and the requestable slots. The belief state
has size 311, 156, 431 and 174 for the restaurants,
hotels, booking and payment domains in the hi-
erarchical approach. The flat models have input
spaces of sizes 490 and 333 for the restaurant and
hotel domains accordingly.

The proposed models were evaluated with an
agenda-based simulated user (Schatzmann et al.,
2006) where the user intent was perfectly captured
in the dialogue belief state. For both intrinsic and
extrinsic evaluation, the total return of each dia-
logue was set to 1(D) ∗ 20 − T , where T is the
dialogue length and 1(D) is the success indicator
for dialogueD. Maximum dialogue length was set
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Figure 3: Comparison of policies learnt from
scratch and those pre-trained on master domains.

to 30 in both hierarchical and flat model scenarios
with γ = 0.99.

At the beginning of each dialogue, the master
domain is chosen randomly and the user is given a
goal which consists of finding an entity and either
booking it (for a specific date) or paying for it. The
user was allowed to change the goal with a small
probability and could not proceed with the sub-
domains before achieving the master domain goal.

4.1 Hierarchical versus the Flat Approach
Following (Dietterich, 2000; Kulkarni et al.,
2016), we apply a more exploratory policy in the
case of master domains, allowing greater flexibil-
ity in managing primitive and composite actions
during the initial learning stages. Figure 2 presents
the results with 4000 training dialogues, where the
policy was evaluated after each 200 dialogues.

The results validate the option framework: it
learns faster and leads to a better final policy than
the flat approach. The flat model did overcome
the cold start problem but it could not match the
performance of the hierarchical model. The poli-
cies learnt for sub-tasks with the flat approach per-
form only 10% worse (on average) than in the hi-
erarchical case. However, providing the entity in
both master domains has around 20% lower suc-
cess rate compared to HRL.

Moreover, the flat model was not able to match
the performance of the HRL approach even with
more training dialogues. We let it run for another
6000 dialogues and did not observe any improve-
ments in success rate (not reported here). This
confirms the findings from other RL tasks - the
flat approach is not able to remember successful
strategies across different tasks (Peng et al., 2017;
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Duan et al., 2016). An example of two success-
ful dialogues for both models is presented in the
Figure 4.

4.2 Adaptation of Pretrained Policies
Following the idea of curriculum learning (Ben-
gio et al., 2009), we test the adaptation capabilities
of pre-trained policies to more complex situations.
Adaptation has proven to be an effective way of
reusing existing dialogue policies in new domains
(Gašić et al., 2014). Since the kernel function is
factored into the kernel for the belief state space
and the action space, we can consider them sep-
arately. Following (Gašić et al., 2014) the action
kernel function is defined only on actions that ap-
pear both in original and extended sets and defined
0 otherwise. The kernel for the belief state space
is not changed as we operate on the same belief
space.

We first train both master domains (without sub-
goals) until robust policies are learned. Subse-
quently, both master domains are re-trained in a
hierarchical manner for 4000 dialogues (testing af-
ter each 200). Figure 3 shows the results com-
pared to the policy learnt from scratch. Both poli-
cies trained on independent domains were able to
adapt to more complicated tasks very quickly us-
ing the hierarchical framework with new options.
This confirms that our approach can substantially
speed up learning time by training a policy in a
supervised way with the available data and then
adapting it to more complex multi-task conversa-
tions.

5 Conclusion and Future Work

This paper introduced a hierarchical policy man-
agement model for learning dialogue policies
which operate over composite tasks. The proposed
model uses hierarchical reinforcement learning
with the Gaussian Process as the function approx-
imator. Our evaluation showed that our model
learns substantially faster and achieves better per-
formance than standard (flat) RL models. The nat-
ural next step towards the generalisation of this
approach is to deepen the hierarchy and apply to
more complex tasks.
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constraint slot
pricerange moderate
kind guesthouse
stars don’t care
hasparking no
hour 4 pm
peopleNo 4
durationDays 4
day don’t care

requestable slots
name of hotel
price of hotel

S: Hello, welcome to the Cambridge Multi-Domain dia-
logue system. How may I help you? [master domain]

U: Hello.
S: Do you want a hotel or a guesthouse?
U: I’m looking for a guesthouse in a moderate pricerange. I

don’t care about stars and don’t need a parking access.
S: A and B guest house is in a moderate pricerange and has

4 stars.
U: How much does it cost?
S: Cheapest single room is 50 pounds and a cheapest double

room is 70 pounds .
U: Ok. Can you book it for 4 people?
S: book() [option action]
S: What time are you planning to check in? [sub-domain]
U: 4 pm.
S: How long do you want to stay?
U: 4 days anytime soon.
S: You want to book it for 4 people, is that right?
U: Yes.
S: I confirm a reservation for 4 days on Saturday for 4 peo-

ple. Reservation number is 8.
U: Bye.
S: Goodbye. [master domain]

S: Hello, welcome to the Cambridge Multi-Domain dia-
logue system. How may I help you?

U: I am looking for a guesthouse.
S: How many stars should the place have? From 0 to 4.
U: I don’t need a parking access.
S: How many stars should the place have? From 0 to 4.
U: I don’t care but the price should be moderate.
S: A and B guest house is in a moderate pricerange and has

4 stars.
U: How much does it cost?
S: Cheapest single room is 50 pounds and a cheapest double

room is 70 pounds.
U: Ok. Can you book it for 4 people anytime soon?
S: It doesn’t have to have a parking, right? [wrong do-

main]
U: Yes.
S: For what day should I make a reservation?
U: I don’t care.
S: You are looking for a 4 stars hotel right? [wrong do-

main]
U: Yes.
S: Would you like the place to have a parking? [wrong

domain]
U: No.
S: How many days do you want to stay there?
U: 4.
S: I confirm a reservation for 4 days on Saturday. Reserva-

tion number is 10.
U: Bye.
S: Goodbye.

Figure 4: An example dialogue with the same user
goal (top) handled by HRL (middle) and flat (bot-
tom) models.

90



References
P.-L. Bacon, J. Harb, and D. Precup. 2017. The Option-

Critic Architecture. 31AAAI Conference On Artifi-
cial Intelligence .

Andrew G Barto and Sridhar Mahadevan. 2003. Re-
cent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems 13(4):341–
379.
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Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien
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