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 Dialogue tracking is the task of tracking the user goal in a dialogue.
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 The ability to say: “I don‘t know!“

 A prediction should have high uncertainty if the model cannot accurately 
make an prediction for the current observation.
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 Overconfidence is when a model is always extremely certain about its 
predictions, even when these predictions are incorrect.

 Problems:

 Users cannot rely on the model as it makes incomprehensible mistakes.

 Predictions by the model is hard to understand.
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 A well-calibrated model is one 
where the confidence and 
accuracy of the model is aligned.
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 Bayesian Neural Networks

 Loss Functions

 Ensembles

 Post Processing
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 Large number of extra parameters

 Very difficult to select suitable priors 
for the parameters during training.

 Learns the posteriors of the 
parameters and the model likelihoods 
jointly.
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 SoftMax Cross Entropy

 Label smoothing

 Bayesian matching
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𝑞 𝑦; 𝛼 = ቊ
1 − 𝐾 − 1 𝛼 if 𝑦 = true label

𝛼 otherwise

K – Number of possible classes

𝛼 – Smoothing parameter
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𝑦~Categorical 𝒛

𝒛~Dirichlet 𝛼𝟏

 Likelihood (True Label)

 Prior (Used to learn uncertainty)

 Posterior (Target Distribution)

𝒛|𝑦~Dirichlet 𝛼𝟏 +
𝒚

𝜆
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Loss function Joint goal 

accuracy

Top 3 joint 

goal 

accuracy

Expected joint 

goal calibration 

error

Cross entropy 46.7% 69.9% 1.996

Label smoothing 46.3% 74.6% 1.292

Bayesian matching 31.0% 45.1% 4.922

 Label smoothing produces better calibration

 Bayesian matching results in under-confidence
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ℙ 𝑦|𝒙, 𝒟 = නℙ 𝑦|𝒙, 𝜽 ℙ 𝜽|𝒟 𝑑𝜽

Likelihood given 

the model

(Model predictions)

Posterior of the 

model

(Intractable)
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ℙ 𝑦|𝒙, 𝒟 = නℙ 𝑦|𝒙, 𝜽 ℙ 𝜽|𝒟 𝑑𝜽

≈ නℙ 𝑦|𝒙, 𝜽 𝑞 𝜽 𝑑𝜽 Approximate the posterior

using an ensemble

≈ ෍

𝑖=1

𝑁

ℙ 𝑦|𝒙, 𝜽(𝒊)

𝜽(𝒊)~𝑞 𝜽

Monte-Carlo Integration
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 Dropout:

 Collection of models with different nodes randomly eliminated.

 Single model trained on all the training data

 Bootstrap:

 Collection of training sets resampled from the original training set

 Collection of independent models trained on the subsets

 Sampling is done using “with replacement”.

Original

Data
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Strategy Joint goal 

accuracy

Top 3 joint 

goal 

accuracy

Expected joint 

goal calibration 

error

Baseline 46.3% 74.6% 1.292

Dropout Ensemble 46.6% 76.1% 2.217

Bootstrap Ensemble 48.4% 84.1% 0.841
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𝑞 𝑦 = 𝜑
𝒛

𝛼

 z – Model output logits

 𝛼 – Scaling coefficient

 𝜑 – Activation function
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 Using an appropriate loss function can improve model 
calibration.

 Ensembles of models provides significant improvement in 
calibration.

 Post processing is not very effective as it applies the same 
correction to every observation.

 It is possible to teach the model to:

“Know when it does not know.”
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 Calibration of Pre-trained Transformers

 Dropout as a Bayesian Approximation: Representing Model 
Uncertainty in Deep Learning

 On Calibration of Modern Neural Networks

 Being Bayesian about Categorical Probability

 SUMBT: Slot-Utterance Matching for Universal and Scalable Belief 
Tracking

 Predictive Uncertainty Estimation via Prior Networks

 Uncertainty in Structured Prediction

https://arxiv.org/abs/2003.07892
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/2002.07965
https://arxiv.org/abs/1907.07421
https://arxiv.org/abs/1802.10501
https://arxiv.org/abs/2002.07650

