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 Dialogue tracking is the task of tracking the user goal in a dialogue.
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Hey. I need a 

restaurant near 

the city centre.

hello(type=restaurant) 0.6

inform(type=restaurant, location=centre)   0.4 R
O

type

CO

location

Where would 

you like the 

restaurant?

The City Centre!
inform(location=city) 0.6

inform(location=centre)                       0.4 CC

location

To confirm you 

want a 

restaurant near 

the city centre?
O

R
O

type
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 The ability to say: “I don‘t know!“

 A prediction should have high uncertainty if the model cannot accurately 
make an prediction for the current observation.
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 Overconfidence is when a model is always extremely certain about its 
predictions, even when these predictions are incorrect.

 Problems:

 Users cannot rely on the model as it makes incomprehensible mistakes.

 Predictions by the model is hard to understand.
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 A well-calibrated model is one 
where the confidence and 
accuracy of the model is aligned.
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 Bayesian Neural Networks

 Loss Functions

 Ensembles

 Post Processing
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Bayesian Neural Networks
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 Large number of extra parameters

 Very difficult to select suitable priors 
for the parameters during training.

 Learns the posteriors of the 
parameters and the model likelihoods 
jointly.
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 SoftMax Cross Entropy

 Label smoothing

 Bayesian matching
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𝑞 𝑦; 𝛼 = ቊ
1 − 𝐾 − 1 𝛼 if 𝑦 = true label

𝛼 otherwise

K – Number of possible classes

𝛼 – Smoothing parameter
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Neural

network

Minimise

KL Divergence
“Dog”

Bayes rule

𝛼 𝜆



hhu.de

Bayesian Matching
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𝑦~Categorical 𝒛

𝒛~Dirichlet 𝛼𝟏

 Likelihood (True Label)

 Prior (Used to learn uncertainty)

 Posterior (Target Distribution)

𝒛|𝑦~Dirichlet 𝛼𝟏 +
𝒚

𝜆
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Loss function Joint goal 

accuracy

Top 3 joint 

goal 

accuracy

Expected joint 

goal calibration 

error

Cross entropy 46.7% 69.9% 1.996

Label smoothing 46.3% 74.6% 1.292

Bayesian matching 31.0% 45.1% 4.922

 Label smoothing produces better calibration

 Bayesian matching results in under-confidence
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ℙ 𝑦|𝒙, 𝒟 = නℙ 𝑦|𝒙, 𝜽 ℙ 𝜽|𝒟 𝑑𝜽

Likelihood given 

the model

(Model predictions)

Posterior of the 

model

(Intractable)
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ℙ 𝑦|𝒙, 𝒟 = නℙ 𝑦|𝒙, 𝜽 ℙ 𝜽|𝒟 𝑑𝜽

≈ නℙ 𝑦|𝒙, 𝜽 𝑞 𝜽 𝑑𝜽 Approximate the posterior

using an ensemble

≈ 

𝑖=1

𝑁

ℙ 𝑦|𝒙, 𝜽(𝒊)

𝜽(𝒊)~𝑞 𝜽

Monte-Carlo Integration
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 Dropout:

 Collection of models with different nodes randomly eliminated.

 Single model trained on all the training data

 Bootstrap:

 Collection of training sets resampled from the original training set

 Collection of independent models trained on the subsets

 Sampling is done using “with replacement”.

Original

Data
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Strategy Joint goal 

accuracy

Top 3 joint 

goal 

accuracy

Expected joint 

goal calibration 

error

Baseline 46.3% 74.6% 1.292

Dropout Ensemble 46.6% 76.1% 2.217

Bootstrap Ensemble 48.4% 84.1% 0.841
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Reliability Diagram
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Post Processing - Temperature Scaling
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Post Processing - Temperature Scaling

25

𝑞 𝑦 = 𝜑
𝒛

𝛼

 z – Model output logits

 𝛼 – Scaling coefficient

 𝜑 – Activation function
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 Using an appropriate loss function can improve model 
calibration.

 Ensembles of models provides significant improvement in 
calibration.

 Post processing is not very effective as it applies the same 
correction to every observation.

 It is possible to teach the model to:

“Know when it does not know.”
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 Calibration of Pre-trained Transformers

 Dropout as a Bayesian Approximation: Representing Model 
Uncertainty in Deep Learning

 On Calibration of Modern Neural Networks

 Being Bayesian about Categorical Probability

 SUMBT: Slot-Utterance Matching for Universal and Scalable Belief 
Tracking

 Predictive Uncertainty Estimation via Prior Networks

 Uncertainty in Structured Prediction

https://arxiv.org/abs/2003.07892
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/2002.07965
https://arxiv.org/abs/1907.07421
https://arxiv.org/abs/1802.10501
https://arxiv.org/abs/2002.07650

