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®m Dialogue tracking is the task of tracking the user goal in a dialogue.

User

Dialogue Tracker
Utterance ‘

Natural

System Language Policy Agent
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Hey. | need a
restaurant near
the city centre.

helloft t 9 e Where would
ello(type=restauran : :
inform(type=restaurant, location=centre) 0.4 ® E you like the

. restaurant?
type location

To confirm you

inform(location=city) . want a
inform(location=centre) : 0 ® restaurant near

type location the city centre?

The City Centre!
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[CLS] restaurant —food [SEP] [CLS] what type of food would you like ? [SEP]
a moderately priced modemn European food . [SEP]
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= The ability to say: 1 don‘t kKnow!*

m A prediction should have high uncertainty if the model cannot accurately
make an prediction for the current observation.

T = F—
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® Overconfidence is when a model is always extremely certain about its
predictions, even when these predictions are incorrect.

B Problems:

Users cannot rely on the model as it makes incomprehensible mistakes.
Predictions by the model is hard to understand.
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= Perfectly Calibrated Underconfident

m Awell-calibrated model is one — Overconfident
where the confidence and !
accuracy of the model is aligned. o
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®m Bayesian Neural Networks
B [ oss Functions

® Ensembles

B Post Processing

T = F—
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® |Large number of extra parameters

®m Very difficult to select suitable priors
for the parameters during training.

® | earns the posteriors of the
parameters and the model likelihoods

jointly.
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m SoftMax Cross Entropy
® |abel smoothing
® Bayesian matching
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network  __,
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Minimise

KL Divergence
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q(y; a) = {1 —(K—1Da ify= ‘Frue label
a otherwise

K — Number of possible classes
a — Smoothing parameter
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®m Likelihood (True Label)
y~Categorical(z)

® Prior (Used to learn uncertainty)
z~Dirichlet(al)

B Posterior (Target Distribution)

z|y~Dirichlet (al + %)
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Loss function Joint goal Top 3joint | Expected joint
accuracy goal goal calibration
accuracy error
Cross entropy 46.7% 69.9% 1.996
Label smoothing 46.3% 74.6% 1.292
Bayesian matching 31.0% 45.1% 4,922

B |abel smoothing produces better calibration
B Bayesian matching results in under-confidence
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P(y|x,D) = jIP(y|x, 0)P(0|D)do

/N

Likelihood given Posterior of the
the model model
(Model predictions) (Intractable)
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~ z P(ylx’ 0(1)) Monte-Carlo Integration
=1

0 ~q(6)
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B Dropout:
Collection of models with different nodes randomly eliminated.
Single model trained on all the training data

Collection of training sets resampled from the original training set
Collection of independent models trained on the subsets
Sampling is done using “with replacement”.

°
O O O
'.0.0.0 00O C>O OO

Original
Data
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Strategy Joint goal | Top 3 joint | Expected joint
accuracy goal goal calibration
accuracy error
Baseline 46.3% 74.6% 1.292
Dropout Ensemble 46.6% 76.1% 2.217
Bootstrap Ensemble 48.4% 84.1% 0.841
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B Post Processing - Temperature Scaling th

z
q(y) = ¢ (E)

B 7z — Model output logits

B o — Scaling coefficient

B ¢ — Activation function
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B Using an appropriate loss function can improve model
calibration.

B Ensembles of models provides significant improvement in
calibration.

®m Post processing is not very effective as it applies the same
correction to every observation.

® [t is possible to teach the model to:
“Know when it does not know.”
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Questions
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B Calibration of Pre-trained Transformers

B Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning

B On Calibration of Modern Neural Networks
B Being Bayesian about Categorical Probability

B SUMBT: Slot-Utterance Matching for Universal and Scalable Belief
Tracking
B Predictive Uncertainty Estimation via Prior Networks

B Uncertainty in Structured Prediction
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