

Uncertainty in Dialogue Belief Tracking

Carel van Niekerk

Table of Contents

- 1. Dialogue Belief Tracking
 - SUMBT Model
- 2. What is Uncertainty?
 - The Problem of Overconfidence
 - Calibration
- 3. Solutions
 - Bayesian Neural Networks
 - Loss Functions
 - Ensembles
 - Post Processing
- 4. Conclusion

Dialogue Belief Tracking

Dialogue tracking is the task of tracking the user goal in a dialogue.

Dialogue Belief Tracking

Hey. I need a restaurant near the city centre.

hello(type=restaurant) 0.6 inform(type=restaurant, location=centre) 0.4

Where would you like the restaurant?

Dialogue Belief Tracking - SUMBT

[CLS] what type of food would you like ? [SEP] a moderately priced modern European food . [SEP]

The ability to say: "I don't know!"

A prediction should have high uncertainty if the model cannot accurately make an prediction for the current observation.

- Overconfidence is when a model is always extremely certain about its predictions, even when these predictions are incorrect.
- Problems:
 - Users cannot rely on the model as it makes incomprehensible mistakes.
 - Predictions by the model is hard to understand.

A well-calibrated model is one where the confidence and accuracy of the model is aligned.

- Bayesian Neural Networks
- Loss Functions
- Ensembles
- Post Processing

Bayesian Neural Networks

- Large number of extra parameters
- Very difficult to select suitable priors for the parameters during training.
- Learns the posteriors of the parameters and the model likelihoods jointly.

- SoftMax Cross Entropy
- Label smoothing
- Bayesian matching

SoftMax Cross Entropy

Label Smoothing

Label Smoothing

$$q(y; \alpha) = \begin{cases} 1 - (K - 1)\alpha & \text{if } y = \text{ true label} \\ \alpha & \text{otherwise} \end{cases}$$

K – Number of possible classes α – Smoothing parameter

Bayesian Matching

Bayesian Matching

- Likelihood (True Label)
 - *y*~Categorical(*z*)
- Prior (Used to learn uncertainty)
 - $z \sim \text{Dirichlet}(\alpha \mathbf{1})$
- Posterior (Target Distribution)

$$z|y \sim \text{Dirichlet}\left(\alpha \mathbf{1} + \frac{y}{\lambda}\right)$$

Loss function	Joint goal accuracy	Top 3 joint goal accuracy	Expected joint goal calibration error
Cross entropy	46.7%	69.9%	1.996
Label smoothing	46.3%	74.6%	1.292
Bayesian matching	31.0%	45.1%	4.922

- Label smoothing produces better calibration
- Bayesian matching results in under-confidence

Ensemble

$$\mathbb{P}(y|\mathbf{x}, \mathcal{D}) = \int \mathbb{P}(y|\mathbf{x}, \boldsymbol{\theta}) \mathbb{P}(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$

Likelihood given
the model
(Model predictions) Posterior of the
model
(Intractable)

$$\mathbb{P}(y|\mathbf{x}, \mathcal{D}) = \int \mathbb{P}(y|\mathbf{x}, \boldsymbol{\theta}) \mathbb{P}(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$

$$\approx \int \mathbb{P}(y|\mathbf{x}, \boldsymbol{\theta}) q(\boldsymbol{\theta}) d\boldsymbol{\theta} \qquad \text{Approximate the posterior using an ensemble}$$

$$\approx \sum_{i=1}^{N} \mathbb{P}(y|\mathbf{x}, \boldsymbol{\theta}^{(i)}) \qquad \text{Monte-Carlo Integration}$$

Ensembles

- Dropout:
 - Collection of models with different nodes randomly eliminated.
 - Single model trained on all the training data

- Bootstrap:
 - Collection of **training sets resampled** from the original training set
 - Collection of independent models trained on the subsets
 - Sampling is done using "with replacement".

21

Strategy	Joint goal accuracy	Top 3 joint goal accuracy	Expected joint goal calibration error
Baseline	46.3%	74.6%	1.292
Dropout Ensemble	46.6%	76.1%	2.217
Bootstrap Ensemble	48.4%	84.1%	0.841

Reliability Diagram

Post Processing - Temperature Scaling

Post Processing - Temperature Scaling

$$q(y) = \varphi\left(\frac{\mathbf{z}}{\alpha}\right)$$

- z Model output logits
- α Scaling coefficient
- φ Activation function

- Using an appropriate loss function can improve model calibration.
- Ensembles of models provides significant improvement in calibration.
- Post processing is not very effective as it applies the same correction to every observation.
- It is possible to teach the model to: "Know when it does not know."

Questions

- Calibration of Pre-trained Transformers
- Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
- On Calibration of Modern Neural Networks
- Being Bayesian about Categorical Probability
- SUMBT: Slot-Utterance Matching for Universal and Scalable Belief Tracking
- Predictive Uncertainty Estimation via Prior Networks
- Uncertainty in Structured Prediction