Effective Handling of Dialogue State in the Hidden Information State
POMDP-based Dialogue Manager

M. Gasi¢ and S. Young
CUED/F-INFENG/TR.650
Cambridge University Engineering Department
Trumpington Street
Cambridge. CB2 1PZ
England

E-mail: {mg436,sjy}@eng.cam.ac.uk

Abstract

Effective dialogue management is critically dependent on the information that is encoded
in the dialogue state. In order to deploy reinforcement learning for policy optimisation,
dialogue must be modelled as a Markov Decision Process. This requires that the dialogue
state must encode all relevent information obtained during the dialogue prior to that state.
This can be achieved by combining the user goal, the dialogue history and the last user
action to form the dialogue state. In addition, to gain robustness to input errors, dialogue
must be modelled as a Partially Observable Markov Decision Process (POMDP) and hence, a
distribution over all possible states must be maintained at every dialogue turn. This poses a
potential computational limitation since there can be a very large number of dialogue states.
The Hidden Information State model provides a principled way of ensuring tractability in a
POMDP-based dialogue model. The key feature of this model is the grouping of user goals
into partitions that are dynamically built during the dialogue. In this paper, we extend this
model further to incorporate the notion of complements. This allows for a more complex
user goal to be represented and it enables an effective pruning technique to be implemented
which preserves the overall system performance within a limited computational resource more
effectively than existing approaches.

Contents

1 Introduction 3
2 POMDP Dialogue models 4
3 Hidden Information State Model 4
3.1 Domain Ontology e 4
3.2 State Representation 6
3.3 Belief Update e 6
3.4 Policy Representation and Action Selection 7

4 Extended State Representation 7
4.1 Explicit Representation of Complements 7
4.2 Partitioning Process Lo 8
4.3 Logical Expressions for Nagotiative dialogue 8
4.3.1 Quantifiers in the System’s Response 8

4.3.2 Disjunctions and Conjunctions in the User’s Request 11

5 Pruning 12
5.1 Partition Recombination L oo 12
5.2 Pruning of the Applied Slot-value List 13

6 Evaluation 15
6.1 Disjunctions in the User Goal 16
6.2 Pruning vs Recombination L oo 16
6.3 The Effect of Different Pruning Thresholds 17

7 Conclusion 18
8 Appendix 20
8.1 Camlnfo Domain 20
8.2 Pseudo Code for Pruning L 21
8.3 Typical Long Negotiative Dialogue, 21

List of Figures

= © 00 O Uik Wi

11

Statistical Spoken Dialogue System Structure 5
Generic Ontology Structure 5
Step-by-step Partitioning Process oL 9
Step-by-step Partitioning Process (cont.) oL 10
Average number of partitions for dialogue turno 0L L. 12
Belief Update with Recombination 13
Pruning a slot-value pair from the tree of partitions 15
Belief Update with Pruning o 16
System Performance with Disjunctions in the User’s Request 17

System Performance Comparison of Attribute-Value List Pruning (Pruning) and
Partition Recombination (Recombination). In both cases, the maximum number of
active partitions was 300. Lo 17
Influence of Pruning on System’s Performance 18

List of Tables

= © 00 O Uik Wi

Ontology Rules e 6
Different representations of the same atomic node in a partition 7
Dialogue with Negations in System’s Response 11
Dialogue with Disjunctions in User’s Request 11
Dialogue with Conjunctions in User’s Request 11
CamlInfo Ontology Rules 20
A typical long negotiative dialogue (turns 1-4) 22
A typical long negotiative dialogue (cont., turns 5-8) 23
A typical long negotiative dialogue (cont., turns 9-12) 24
A typical long negotiative dialogue (cont., turns 13-17) 25

1 Introduction

Statistical approaches to dialogue management enable extensible dialogue managers to be built
based on data rather than hand-coded rules. In particular, the reinforcement learning approach
enables a dialogue policy to be learnt in such way as to optimise overall dialogue success. In
order to deploy reinforcement learning for policy optimisation, dialogue is modelled as a Markov
Decision Process (MDP) [1]. This requires the dialogue state to be Markovian, i.e., the state has
to encode everything that happened previously in the dialogue which might be potentially useful
for selecting the next action. In addition, modelling dialogue as a Partially Observable Markov
Decision Process (POMDP) allows the dialogue manager to be robust to speech recognition errors
[8, 4]. This approach requires that a distribution over all dialogue states, the belief state, is
maintained at each dialogue turn.

According to [7], the combination of the user goal, the dialogue history and the last user action
provides sufficient information to form a Markovian dialogue state. However, the set of all such
dialogue states can be very large. This is particularly limiting in the case of the POMDP, where
a distribution over all states has to be maintained at every dialogue turn. In order to deal with
this, there are two main approaches which enable a tractable POMDP dialogue manager to be
built for a real-world task. The Bayesian Update of Dialogue State (BUDS) model [4], assumes
that the state can be factored into independent elements and then the probability distribution
can be independently updated for each element. The Hidden Information State (HIS) model,
advocated in [8], does not assume any independence relationship between different elements of the
state. Instead, it maintains the probability distribution of only the most likely dialogue states. In
order to do this efficiently, user goals are grouped together into partitions, on the assumption that
every goal in the same partition is equally likely. The partitions are built using the N-best user
dialogue acts from the speech understanding component, the system’s output dialogue act and the
domain ontology. In this way, the partitions are constrained to represent only the plausible goals
from the domain. A similar approach is adopted in [6] with the difference that an ontology is not
used to determine possible goals. Instead, the partitions represent every possible combination of
attribute-value pair and their complements.

In order to further exploit modelling of the input dependencies that the HIS model facilitates,
we extend this framework to enable richer expressibility via the notion of complements. Similar
to [6], the partitions are formed using not only the user input, but also the complements of the
user input. In this way, coverage of potential user goals is improved. This is particularly useful for
more complex dialogue structures, where the user goal evolves during the dialogue, influenced by
the system’s responses. Moreover, the notion of complements allows a variant of first order logic
to be incorporated, i.e, the user can use negations, conjunctions and disjunctions to communicate
with the system and the system can use quantifiers to express the result of the user query.

Since there is uncertainty in the user input at every turn, the number of possible partitions
grows exponentially as the dialogue progresses. This poses computational issues, especially in
domains where relatively long dialogues are expected. It also limits the length of the N-best list of
hypothesised user dialogue acts input to the dialogue manager, which is crucial for robust belief
monitoring in noisy conditions [5]. In this paper, we show that the explicit notion of complements
allows an efficient pruning technique to be implemented which enables arbitrarily long N-best lists
of input acts and arbitrarily long dialogues to be supported, whilst preserving the most probable
user goals.

The next section gives a brief overview of the Hidden Information State model with a focus on the
structure of the ontology, the state representation and the belief update. Then, Section 4 provides
a description of how the notion of complements is used in partitioning to support a more complex
dialogue structure. A technique for reducing the number of partitions is presented in Section 5
and evaluation results are given in Section 6. Finally, conclusions are given in Section 7.

2 POMDP Dialogue models

Modelling dialogue as a POMDP crucially depends on the information that is included in the
dialogue state. On one hand, it has to be sufficient to allow the state to be Markovian, and,
on the other hand, it has to enable tractable belief monitoring and policy learning. A sufficient
representation of state can be achieved by combining the user goal, the dialogue history and the
last user action. However additional approximations are needed to achieve tractability.

The Bayesian Update of Dialogue State (BUDS) model [4] assumes that the dialogue state can
be decoupled into conditionally independent concepts. In simple slot-filling dialogues where each
slot as an independent concept, the information is extracted from the user request and filled in
each slot. The problem with this approach arises when there are errors in the user input in which
case correctly filled slots are not able to contribute to resolving ambiguities in related slots, since
they are considered independent. In order to overcome this, the BUDS model represent the state
as a set of concepts in the form of a Bayesian network that incorporates some of the dependencies
between the concepts. Not having all the concepts dependent allows for a prior distribution to be
defined on each concept separately and a posterior distribution to be tractably maintained.

The Hidden Information State (HIS) model [8], in contrast, maintains the full joint distribution
without making any independence assumptions. For example, if the user said “I want a cheap
hotel” there would be a joint probability for cheap and hotel. If later in the dialogue, the system
obtains just “The cheap one” as the user input, the probability for both cheap and hotel would
be increased, which gives more chance that the system would give the correct answer to the user
request. Thus, this approach enables both errors in the input as well as anaphoric user requests
to be handled. Tractability in the HIS model is achieved by grouping user goals into partitions
and assuming that each goal in a partition is equally likely. The recombination of low probability
partitions can further improve computational efficiency at the cost of a small loss in accuracy [6].
In this paper we explore another method for achieving tractability in the HIS framework, showing
additional expressiveness as well as improved performance of the system.

3 Hidden Information State Model

A HIS-based spoken dialogue system consists of three major components: speech understanding,
speech generation and dialogue management - see Fig. 1. The speech understanding component
consists of a speech recogniser and a semantic decoder. Its function is to map user utterances
into an abstract representation of the user intention — the user action. Since this input might
be corrupted with noise, an N-best list of possible user actions along with a confidence score for
each is passed to the dialogue management component in each turn. Using this, the dialogue
manager updates the estimate of the belief state. Then, based on the updated belief estimate
and the dialogue policy, the dialogue manager chooses the system’s action. The speech generation
component normally consists of a natural language generator and a speech synthesiser. It maps
the system’s response first into text and then into speech. The overall structure of a statistical
spoken dialogue system is.

The core of the system is the HIS dialogue manager. In the remainder of this section we explain
the main features of the HIS model based on [8]. Firstly, we explain the structure of the ontology
that is used for building the dialogue state. We then explain how the dialogue state is formed and,
following that, we give a brief description of the belief update procedure. Finally, we conclude the
section with the description of the action-selection process.

3.1 Domain Ontology

The HIS model is targeted at limited domain query dialogues. As far as dialogue management
is concerned, the dialogue between the system and the user takes place at the level of dialogue
acts where each dialogue act comprises a type and a list of attribute-value pairs. For example,
inform(type=restaurant, food=Chinese) would be the representation at the dialogue act level

Speech Belief

| > Understanding Estimate

User l

| Speech Dialogue

Generation Policy

v

A

Dialogue Management

Figure 1: Statistical Spoken Dialogue System Structure

class

SN

atomic class lexical lexical

\\atom/c atomic

atomic c€lass |exjcal lexical

atomic atomic
Figure 2: Generic Ontology Structure

corresponding to the user saying “I’d like a Chinese restaurant”. A domain ontology then defines
all of the attributes and their possible values, as well as the structural relationship between different
attributes.

The ontology has a tree structure. The tree nodes are divided in three groups: class nodes, lexical
nodes and atomic nodes (see Fig 2). Class nodes can have many child nodes, the first is always
atomic and defines a specific instance of the class, the remainder consist of an optional class node
and one or more lexical nodes. Lexical nodes can have only a single atomic child node.!

As an example, a simple tourist information ontology is given in Table 1, where examples of
class nodes are entity and type (bold font), lexical nodes are pricerange and food (regular
font) and atomic nodes are restaurant and Chinese (italic font).

The attributes listed in each dialogue act correspond to either class or lexical nodes in the on-
tology; and the values that they take are represented by atomic nodes. The tree root is a class
node and it defines the user goal in the most general way. Other class nodes define the user query
more specifically. In detail, each class node and its atomic child node define an additional set of
attributes that are represented by lexical nodes and optionally a class node. For example, in the
ontology from Table 1, atomic node restaurant for class node type defines an additional set of
lexical nodes: food, pricerange, music, drinks, and stars.

The Hidden Information State model makes use of the hierarchical relationship between the at-
tributes to model the dependencies in each user input. For example, in the tourist information
domain if the user specified food=Italian that implies that the user wants type=restaurant and
entity=venue. A description of a real-world tourist information ontology is given in Appendix 8.1.

INote that attributes corresponding to lexical nodes are often referred to as slots in the dialogue systems
literature since in simple systems, dialogues are designed with the aim of filling in a fixed set of slots with values
from the user.

entity < venue(type, area, name, addr, near, phone, comment)
type — hotel(pricerange, stars, price, drinks)

type — restaurant (food, pricerange, price, music, drinks, stars)
type — bar(drinks, music, pricerange)

type «— amenity

area = { central, east, west, ... }

food = { Italian, Chinese, Indian, ... }

Table 1: Ontology Rules

3.2 State Representation

In the Hidden Information State model, the dialogue state is represented as a combination of the
user goal, the last user act and the dialogue history. Since the user goal and the true user act
cannot be directly observed they are both part of the hidden state. Although the system actions
are fully observable, the user actions are not and therefore the dialogue history is also part of the
hidden state.

This combination can result in a vast number of dialogue states and it would not be computa-
tionally tractable to maintain a probability distribution over such a large state space. Therefore,
user goals are grouped together into partitions on the assumption that all goals from the same
partition are equally probable. Partitions are built using the attribute-value pairs from the N-best
list of the user input and the previous system output. They are combined together using the
dependencies defined by the domain ontology. In detail, each partition represents a realisation of
a tree from the ontology. The dialogue history is represented in the form of a finite state machine
that keeps track of the dialogue progress. The combination of a partition, the associated user act
and dialogue history forms a hypothesis, i.e., a single member of the partitioned state space. A
probability distribution over the most likely hypotheses is maintained during the dialogue and this
distribution constitutes the POMDP’s belief state.

The main requirements for representing partitions are that each partition is unique and that they
are represented in a way that allows a large number of partitions to be maintained efficiently and
compactly. Since each partition is the realisation of a tree from the ontology, many partitions
have common subtrees and hence partitions should be able to share nodes and achieve a compact
representation [8]. A problem arises, however, in negotiative dialogues when users change their
goal and ask for something else. The implicit rejection of the current most probable goal means
that the probability of all hypotheses consistent with this goal should go down and the probability
of all other hypotheses should increase. However, without an explicit representation of comple-
ments, it is difficult to determine which set of hypotheses is which. Hence, although sharing nodes
among partitions allows for a vast number of partitions to be efficiently represented, it is difficult
to identify and remove partitions that are represented in such a way. It has been shown in [6]
that partition recombination can overcome this problem with the notion of complements, which
we further explore in this paper.

3.3 Belief Update

The Hidden Information State model maintains a probability distribution over hypotheses — the
belief state. The probability of each hypothesis in the belief state is updated every turn using four
components: the observation model, the user action model, the user goal model and the dialogue
history model. It is updated according to:

V(v al, sh) = k- P(dlal,) Playlp’,am) P@'lp) > P(silp’aly, sa,am) b (psa), (1)
—_——— —_—— — ——— —— o ——
14 observation user user goal dialogue history h
new model action model model old
hypothesis model hypothesis

| Representation || Atomic node for Lexical node food \

Set Chinese English ~ Indian Italian Japanese French Thai
T F T F F F F

Disjunctions Chinese \V Indian

Conjunctions - English N\ —Italian N\ —Japanese N\ —~French A ~Thai

Table 2: Different representations of the same atomic node in a partition

where b is the current belief state, b’ is the updated belief state, p is a partition of user goals, a,,

is the user action, a,, is the system action and sg4 is the dialogue history (primed are the elements
in the next turn). The observation model is derived from a scored N-best list of the user input
dialogue acts generated by the speech understanding component. The user action model consists
of a dialogue act type bigram model and an item matching model. The act type bigram model
determines how probable the user dialogue act type is given its preceding dialogue act type in
the dialogue. The item matching model is a filter that gives a low probability to the dialogue
act items inconsistent with the given partition and a high probability otherwise. The user goal
model is derived from the domain ontology. The dialogue history model is deterministic and it
determines whether updating a particular dialogue history results in a consistent hypothesis. A
more detailed explanation is given in [8].

3.4 Policy Representation and Action Selection

The number of hypothesis for any real-world problem can be very large and applying POMDP
learning algorithms directly to the full dialogue state to find an optimal policy would be compu-
tationally intractable. To overcome this problem, the belief state space (master space) is mapped
into a smaller-sca le summary space. The features of the summary space are: top hypothesis prob-
ability, next hypothesis probability, the last user act type from top hypothesis and an indicator of
how many database entries match the top partition. This continuous summary space is discretised
into a grid, so that Reinforcement learning MDP learning algorithms can be tractably performed.
The policy is a mapping from summary space grid points to summary actions. The policy optimi-
sation is performed in interaction with a simulated user which gives a reward to the system at the
end of every dialogue. In that way, every dialogue is a learning episode, which allows the Monte
Carlo Control algorithm [2, 8] to be used to find the optimal policy. The optimal policy maps
each summary grid point into a summary action selected to yield the highest expected reward.
The summary action is then mapped back into a master action by adding additional information
from the corresponding master belief state to give the required system dialogue act.

4 Extended State Representation

In order to exploit the HIS’ capability to model dependencies between different slot-value pairs,
we extend the standard model to include the explicit representation of complements.

4.1 Explicit Representation of Complements

A partition is a realisation of the ontology tree with an extended representation of values in the
atomic nodes. In detail, class and lexical nodes take unique values, for example type, area or food.
Atomic nodes, on the other hand, are represented as a set of boolean indicators for each plausible
value from the ontology. Alternatively, an atomic node can be represented as a disjunction of the
values which are true or a conjunction of the negation of the values which are false. An example is
given in Table 2. A potential drawback of the set representation is the enumeration of every single
value that a slot can take, which can become cumbersome if the number of values is very large.
The logical representation, either in the form of conjunctions of disjunctions, is more compact.

4.2 Partitioning Process

Partitioning is applying a slot value pair s = v to a partition p that contains node s and creating
its child partition c. In the ontology, s is either a class or a lexical node and v is an atomic node.
In the partition p, node s has a child atomic node that has all possible values that slot s can take.
During the partitioning process, the value v in that atomic node of the partition p is set to false.
The partition c is a copy of the partition p where v is set to true.

In order to apply slot-value pair s = v for partitioning, it has to be ensured that there is a partition
that contains node s. For slot s, the list of superiors is defined as all slot-value pairs s; = v; where
s; are class nodes on the path from the node s to the root of the ontology tree, and v; are the values
of their child atomic nodes that enable the attribute expansion leading to the occurrence of s in
the tree. For example, for slot-value pair food=Italian the list of superiors is type=restaurant,
entity=venue, see Table 1. The ontology automatically generates this list for each slot s, so that
they can be applied prior to applying s = v. In that way, it is ensured that there exists a partition
with node s before s = v is applied.

The partitioning process starts by applying the list of slot-value pairs form the N-best user input
to the initial partition, which is just the root of the ontology tree. The process is then recursively
repeated. In such a way, an ordered tree of partitions is created, where the order indicates when
was each partition created. Slot-value pairs from the system act are also used for partitioning.

It is important to note that this process guarrantees that each partition that is created is unique.
This is achieved by checking if a partition contains v set to false before s = v is applied to that
partition. If it does contain it that means that s = v has alread been used and cannot be applied
againg to that partition.

A step-by-step example of partitioning process is given in Fig 4. The final tree of partitions
represents the partitions that are created from the following slot-value pairs: entity=venue,
type=restaurant, area=central, food=Italian and pricerange=cheap. The ontology from
Table 1 is used to determine the valid combinations. Therefore, there is no combination that
involves type!=restaurant and food=Italian, as lexical node food is only specific to class node
type in which atomic child value restaurant is set to true.

4.3 Logical Expressions for Nagotiative dialogue

The explicit representation of complements in partitions, improves the model in a number of ways.
Firstly, it enables an easier error recovery. For example, if a slot-value pair s = v occurred in the
N-best input due to a recognition error, and it turns out later in the dialogue that the user does
not want v, then the user modelling component will automatically increase the probability of the
partition that contains —v. In that way, even if the system does not know what exactly the user
wants for slot s, the knowledge that user does not want v is explicitly represented so the true user
goal will be in the partition that has —wv.

Secondly, this representation is particularly useful when the user goal evolves during the dia-
logue. For example, if the user wants a Chinese restaurant in the centre, the system may offer
one: Charlie Chan is a Chinese restaurant in the centre, which in the semantic representation is
inform(name=Charlie Chan, type=restaurant, food=Chinese, area=central). When the
system makes such an offer, the partitioning results in some partitions containing name=Charlie
Chan and others name!=Chalie Chan. In a real-wold dialogue it is expected that user might
want to have more options, so user can ask Do you have anything else?, which on semantic level is
reqalts(). Based on this, the user action model increases the probability of partitions which have
name!=Chalie Chan and decreases the probability of partitions that have name=Charlie Chan.

4.3.1 Quantifiers in the System’s Response

Utilising the notion for complements, the system can provide a more accurate response to the user.
Referring back to the example from the previous section, if the user wanted something else than
Charlie Chan, it may turn out that the partition with name!=Chalie Chan, type=restaurant,

0) Intial partition 1

1) Applying: entity=venue 1
1.1

entity

entity ! venue
/N T
venue type area

2) Applying: type=restaurant 1

1.1 entity

entity l
/ \ \ !'venue
venue type area
1.1.1 /
! restaurant

entity

/N T
venue type area
N

restaurant food pricerange

3) Applying: area=central

entity

! venue

1.1

entity

/N T

venue type area

e \

! restaurant

entity

/N T

venue type

venue type
N |

pricerange 1 central

restaurant

food

! restaurant centra

restaurant food pricerange

4) Applying: food=Italian
1.1 .
entity

entity

/N T

venue type area

S I

! restaurant

!'venue

entity
/N TN
venue type area
! restaurant

restaurant

food pricerange central

! Italian

! central

restaurant food pricerange

Italian

restaurant food Pricerange central

Italian

Figure 3: Step-by-step Partitioning Process

5) Applying: pricerange=cheap
entity

restaurant food pricerange ! central

entity

SN TT—
venue /tpe\\ ‘

restaurant food pricerange ! central

!'ltalian cheap

restaurant food price‘range

! cheap

! Italian

restaurant food Pric€range i central

Italian entity

SN T
venue type area
e NI |

restaurant food Pric€range y central

Italian ~ cheap

restaurant food prlcelrange

! cheap

central

entity

2

venue type \ area
restaurant food Pricerange central

!'ltalian ~ cheap

Italian

venue

1.1.1.1.1.1

/tVPe\ \ ‘

restaurant food Pricerange central

Italian

Figure 4: Step-by-step Partitioning Process (cont.)

food=Chinese and area=central does not have any matching entries in the database.
the semantic output of the system is inform(name=none, type=restaurant, food=Chinese,
area=central, name!=Charlie Chan), meaning There is no restaurant that serves Chinese food
and is in the centre and isn’t Charlie Chan, or in a more natural form Charlie Chan is the only
Chinese restaurant in the centre. An example of a Cambridge tourist information dialogue (Ap-

pendix 8.1) that utilises such expressions is given in Table 3.

During the course of dialogue, the system, induced by the recognition errors, might not know
what the user wants, but it might be confident about what the user does not want. Coming back to
the previous example, the speech recogniser outputs No, I don’t want central area, I want ... which
on sematic level could be deny(area=central) or inform(area!=central), but the actual value
for the slot area might not be obtained. Then, after applying the user action model, the partition
containing name!=Charlie Chan, type=restaurant, food=Chinese and area!=central might
end up having the highest probability. If such a partition does not have any matching entries in
the database, the system may inform the user about it rather then trying to find out the exact
value of slot area that the user wants. The resulting dialogue act can be inform(name=none,
type=restaurant, food=Chinese, area!=central), meaning There is no restaurant that serves
Chinese food and is not in the central area, or in a more natural form All Chinese restaurants are

in the centre.

These two examples demonstrate the capability of expressing existential and universal quantifier
in the system’s response. This can make the dialogue more efficient as there is no need for the
system to try to resolve every singe constraint that user might have, since knowing just what the

user does not want might be sufficient to direct the user.

10

System | hello()

User inform(=hospital)

System | inform(name="Addenbrooke’s Hospital”,type=amenity,amtype=hospital)

User request(area)

System | inform(name="Addenbrooke’s Hospital” ,area=addenbrookes)

User inform(areal=addenbrookes)

System | inform(name=none,type=amenity,amtype=hospital,name!="Addenbrooke’s Hospital”)
User request(addr)

System | inform(name="Addenbrooke’s Hospital”,
addr="Cambridge University Hospitals NHS Foundation Trust, Hills Road”)
User bye()

Table 3: Dialogue with Negations in System’s Response

System | hello()
User inform(=restaurant, food=Thai | Indian, pricerange=cheap))

(
System | inform(name="The Rice Boat” type=placetoeat,eattype=restaurant,pricerange=cheap,food=Indian)
User reqalts(food=Thai)

System | inform(name=none,type=placetoeat,pricerange=cheap,food=Thai)

User request(name="The Rice Boat”, addr)
System | inform(name="The Rice Boat”,addr="37 Newnham Road”)
User bye()

Table 4: Dialogue with Disjunctions in User’s Request

4.3.2 Disjunctions and Conjunctions in the User’s Request

It was mentioned previously that atomic nodes in partitions can be represented in terms of conjunc-
tions or disjunctions of values in partitions. So far we only considered the case when the user has
in mind one specific value for each slot. Then, multiple values in partition come from the system’s
confusions. However, this representation allows a richer expression of the user’s constrains. For ex-
ample, if the user wants a restaurant that servers Thai or Indian food inform(type=restaurant,
food=ThaiVIndian), partitions can directly represent this. Therefore, the system can handle
such request. An example of Cambridge tourist information dialogue where the user makes use of
disjunctions is given in Table 4.

Since we assume that an entity has only one value for each attribute, for example a ho-
tel can only have a certain number of stars, then conjunctions such as stars=4A5 would not
be applicable. However, conjunctions in terms of negations are possible and effectively repre-
sent disjunctions of negated values. For example, user constraint I want a hotel, but not with
four or five stars is, on semantic level, inform(type=hotel,stars!=4V5), or, alternatively,
inform(type=hotel,stars!=4, stars!=5). This can be directly represented in partitions and
thus handled by the system, see a Cambridge tourist information dialogue in Table 5.

System | hello()

User inform(=hotel, stars!="4", stars!="5")

System | inform(name="Express by Holiday Inn Cambridge” type=placetostay,staytype=hotel,stars="2")
User reqalts()

System | inform(name="Royal Cambridge Hotel” ,type=placetostay,staytype=hotel,stars="3")

User request(area)

System | inform(name="Royal Cambridge Hotel” area=riverside)

User bye()

Table 5: Dialogue with Conjunctions in User’s Request

11

5 Pruning

Due to the nature of the partitioning process, the number of partitions grows exponentially as the
dialogue progresses, which poses a potential computational limitation. A simple experiment on
800 dialogues in interaction with a simulated user in noise free conditions shows the exponential
nature of the growth of the number of partitions, see Fig. 5. Note that there are only 11 example
dialogues with 20 turns, which accounts for an inconsistent number of partitions for 20 turn length.

1800

1600

1400

i
)
=]
S
T

1000

@

S

S
T

Average number of partitions
@
<]
3
T

400

200+

:
0 2 4 6 8 10 12 14 16 18 20
Dialogue turn

Figure 5: Average number of partitions for dialogue turn

The complexity issue becomes more apparent if the length of the N-best input is large. Con-
straining the N-best list to be small and setting a maximum number of dialogue turns can be very
limiting for real-world dialogues. Therefore, a pruning technique is needed to deal with this.

5.1 Partition Recombination

The number of partitions can be reduced simply by removing the low probability partitions. The
hypotheses, the probability of which is maintained through-out the dialogue, are formed as a com-
bination of a partition, the last user action and the respective dialogue history, see Section 3.3.
Therefore, each partition has a number of associated hypotheses, so the probability of a partition
is a sum of the probabilities of each of its associated hypotheses b(p) = >_, ¢, b(h). This allows for
the low probability partitions to be removed. However, since the partitions represent the groups
of user goals, completely removing a user goal makes it impossible to recreate it, which is not
desirable.
Rather then removing the partitions, the method proposed in [6] reduces the number of partitions
by recombining the low probability leaf partitions with their parent partitions. The recombina-
tion is performed by removing the complementary value from the parent partition, updating its
probability with the probability of its child partition and removing the child partition.
An outline of the belief update algorithm that utilises the partition recombination is given in
Fig. 6. In each dialogue turn the partitioning is performed using the slot-value pairs from the
last system action (line 5). Then, for each observation in the N-best user input the partitioning
is performed using its slot-value pairs (line 8), the belief over new hypotheses is updated (line
11) and the updated belief over partitions is accumulated (line 12). If the number of partitions
exceeds the threshold, the partitions are recombined according to the current updated belief (line
15). After the whole N-best list is processed, the next system action is chosen according to the
updated belief.

This method is shown to be effective in the domains that do not have many slots [6]. However,
there are some considerations in more complex domains. Firstly, it may be limiting to allow a

12

1: Let o/ be an observation from the N-best input
2: Let p be a partition and its belief b(p)
3: Let h be a hypothesis and its belief b(h)
4: repeat for each dialogue turn
Belief Update

5: Partition each p using slot-value pairs from the last system action a,,
6: Initialise ¥ (p) = 0 for all partitions p in the current set of partitions
7: for each o’ in the N-best list do
8: Partition each p using slot-value pairs from o’
9: for each partition p’ in the current set of partitions do
10: for create new hypothesis i’ from previous hypothesis h and o' do
. V(') = P(0'|al) P[0, am) P(R|, D', @) P2)b(1)
12 b (p') =¥ () + V()
13: end for
14: end for
Partition Recombination

15: Recombine partitions w.r.t the current updated belief o' (p’)
16: end for

Action Selection
17: Choose the next system action a,,, according to b’ (h')

18: until dialogue ended

Figure 6: Belief Update with Recombination

partition to be recombined only with its parent, since there may be other partitions it is comple-
mentary to. Referring to the example from Fig 4, partition 1.1.1.1.1.1 is complementary both to
partition 1.1.1.1.1 and to partition 1.1.1.1.2. Secondly, allowing only leaf partitions to be removed
might not be desirable in long dialogues. Leaf partitions are usually the last to be created. In
dialogues where the user goal evolves during the time, the partitions that are created early on
are become less probable as the dialogue progresses, whereas the leaf partitions are more useful.
If one amends the recombination technique to allow for non-leaf partitions to be recombined for
example 1.1.1 and 1.1.2, it would be difficult to determine the right position for the newly ob-
tained partition. What is more, such a partition would not have any complements and thus it
would be impossible to remove it before other partitions are recombined. Finally, the problem of
partitions without any complements can occur even in the case of recombining the leaf partitions.
For example, by recombining 1.1.1.1.1.1 with its parent 1.1.1.1.1 results in a partition that does
not have any complements. In complex dialogues, where the user can change the goal, it may be
important that each partition has a complementary partition.

5.2 Pruning of the Applied Slot-value List

We propose a new pruning method that is not constrained by the position of partitions in the tree
and guarantees that every partition has a complement.

Rather then recombining the partitions, the number of partitions can be reduced by removing
some of the applied slot-value pairs. The marginal probability of slot-value pair s = v is the sum
of probabilities of all partitions that have v set to true. In that way, a sorted list of the applied
slot-value pairs can be obtained. The lowest probability slot-value pairs probably have the least
impact on modelling the user goal and therefore can be removed.

Let s = v be a slot-value with the lowest probability in the list of applied slot-value pairs. Assume
that s = v is not among superiors for any other applied slot-value pair sy = vy (see Subsection
4.1). To remove s = v, the following procedure is taken. Starting from the root partition, it is
examined if the partition contains node s with a child node containing —v. If not, the search is
continued trough its children starting from the oldest. If it does contain —w, it is marked as upper.

13

Then the search is performed trough its children, starting from the oldest until, one that contains
node s with a child node containing v is found. It is marked as lower. Such pair of partitions is
guaranteed to exist, since if s = v is applied to a partition and its child is created, that partition
contains —v and the child contains v. Since upper is the parent of lower, they are complementary
and only differ in the atom node that contains v. What is more, if partitions upper and lower have
child partitions there are subtrees of same structure with these partitions as roots. Each partition
from the upper subtree will have its complement in the lower subtree. All that is needed is to add
the belief of each partition in the lower subtree to its complement in the upper subtree, to remove
—w from upper partition and to remove the lower subtree. The procedure is continued until there
is no partition matching —w left. This can be easily performed using the stack structure. The
pseudo code is given in the Appendix 8.2.

An example of the pruning procedure is given in Fig. 7, where slot-value pair food=Italian is
removed from the list of applied slot-value pairs. The first partition that contains node food and
ITtalian is 1.1.1 and its child partition that contains Italian is 1.1.1.2. They are respectively
marked as upper and lower and both of them have child partitions which are complementary,
1.1.1.3 and 1.1.1.2.1 respectively. Similarly for partitions 1.1.1.1 and 1.1.1.1.1. Then, partitions
with Italian are removed and !Italian are removed from their complementary partitions.

If s = v is among superiors of some slot-value pair s = vy, then s = vy has to be pruned before
s = v can be pruned. Referring to the example from Fig 4, before removing type=restaurant,
food=Italian and area=central have to be removed first. If the pruning is performed based
on the lowest probability, it is never be the case that food=Italian has higher probability then
type=restaurant, since it can only occur in the partitions that have restaurant as true. However,
some attributes can occur for different realisations of class nodes. For example, type=restaurant
and type=hotel can both have pricerange=cheap, see Table 1. In that case, if type=hotel is
to be removed, pricerange=cheap has to be removed only from the partitions that have hotel.
This is performed by removing s = vy given s = v. The algorithm for removing s; = vy given
s = v is same as the one described above, with the difference that upper and lower partitions are
complementary in v; and both contain v set to true.

In this way, it is guaranteed that the lowest probability slot-value pair can be removed from the
tree of partitions, regardless of when it was applied and how the partitions that contain it are
structured in the tree. After pruning a slot-value pair, the structure of the tree of partitions is the
same as if that slot-value pair was not applied at all, so the pruning does not affect the existence
of complements.

The partitioning exponentially increases the number of partitions, however, this pruning technique
exponentially decreases it, so there is no danger that the number of partition grows faster then
being reduced. This allows dialogues of arbitrary length. What is more it also enables large N-best
inputs to be applied.

An outline of the belief update algorithm that utilises the pruning method is given in Fig. 8. In
contrast to the algorithm in Fig. 6, the pruning is applied before the processing of the input, so
that no information from the current N-best list is lost before the next system action is chosen.
At the beginning of each dialogue turn a marginal probability over applied slot-value pairs is
calculated (lines 6-8). Then, the pruning of the lowest probability slot-value pairs is performed (line
9). Following that, the partitioning is performed using the slot-value pairs from the last system
action (line 10). Then, for each observation from the N-best list of the user input the partitioning
is performed using its slot-value pairs and the belief is updated (lines 11-18). Finally, the next
action is chosen based on the updated belief (line 19).

In the the Appendix 8.3 an example of a long negotiative dialogue which incorporates this pruning
technique is given together with the list of active slot-value pairs and their marginal probabilities
in each turn.

14

entity

! venue

LIST OF APPLIED SLOT-VALUE PAIRS:

entity=venue

type=restaurant

area=central 1.1

food=ltalian entity
pricerange=cheap / \ \
venue type area
REMOVING:
food=ltalian / I
1.1.1 ! restaurant ! centra

Upper contains ! Italia% UPPER ‘\
Lower contains Italian entity S
They are complementary / \ \

venue type area

N~ |

restaurant food Pricerange y central

\ 1.1.2

entity

/N T

venue type

1
1 cheap ! restaurant

entity

venue /t(pi\ \ |

restaurant food pricerange ! central

type
1.1.1.1\1 Pz N [

OWER restaurant food Pricerange ! central

entity

/N T
venue type area
NN

d pricerange

Italian ! cheap j 1.1.1.2.1

restaurant foo central

1.1.1.1.2

! cheap pricerange

food ! centra,

Italian

restaurant

cheap

Italian

restaurant food Pricerange central

cheap These partitions are complementrary

Partition with Italian is completely removed
! Italian is removed from its complementary partition

Figure 7: Pruning a slot-value pair from the tree of partitions

6 Evaluation

The evaluation is divided in three parts. In Section 6.1, we examine how well the system can
deal with user goals when the constraints are in the form of disjunctions. Then, in Section 6.2,
we compare the performance of pruning in the applied attribute-value list algorithm (described
in Section 5.2) and a version of the partition recombination algorithm [6]. Finally, in Section 6.3
different pruning threshold are examined.

For each experiment, the policy was trained in interaction with a simulated user at the dialogue
act level. The application is the Cambridge tourist information system (Appendix 8.1). The
simulated user gives a reward at the end of each dialogue of 100 if the dialogue was successful and
0 otherwise, less the number of turn. The simulated user allows a maximum of 100 turns in each
dialogue, terminating it when all the necessary information has been obtained or if the dialogue
manager repeats the same dialogue action more than three times in a row. The simulated user is
able to generate user acts for a particular goal, but it can also change the goal during the dialogue.
An error model is used to add confusion to the user input and it produces a scored N-best list of

15

Let o' be an observation from the N-best input
Let p be a partition
Let h be a hypothesis and its belief b(h)
Let d be a slot-value pair and p(d) its marginal probability
repeat for each dialogue turn
Pruning

6: for each applied slot-value pair d do
T p(d) = Zp:dEp ZhGp b(h)
8: end for
9: Prune the list of the applied slot-value pairs w.r.t. p(d)
Belief Update
10: Partition each p using slot-value pairs from the last system action a,,
11: for each o’ in the N-best list do
12: Partition each p using slot-value pairs from o’
13: for each partition p’ in the current set of partitions do
14: for create new hypothesis A’ from previous hypothesis h and o' do
15 V(') = P(0'|al) Pa,|p', @) PR, D', @ @) P)b(1)
16: end for
17: end for
18: end for
Action Selection
19: Choose system action according to v'(h')

20: until dialogue ended

Figure 8: Belief Update with Pruning

user dialogue acts with confidence scores consistent with the required error rate. Each error rate
roughly represents the probability of the user input not being on the top of the N-best list [3].
In order to demonstrate the system’s capability for dealing with reasonably long N-best lists, the
length of the N-best list was set to 10. The policies were trained using the grid-based Monte Carlo
Control algorithm in an incremental noise setting [8]. The resulting policies were evaluated with
the simulated user performing 2500 dialogues at each error rate.

6.1 Disjunctions in the User Goal

For this experiment, the simulated user was modified to produce constraints in the user goal such
that on average 20% of them contain a disjunction of two values, for example, type=restaurant,
pricerange = moderate | cheap, food=Japanese. The performance of the system is compared
on both the tasks that contain disjunctions and regular tasks. The performance is measured as
the average reward at different confusion levels and the results are presented in Fig. 92. As can
be seen from the graph, the system can deal with disjunctions in the user constraints at least as
well as it can for standard user constraints.

6.2 Pruning vs Recombination

In this experiment, the two methods for reducing the number of partitions: the pruning of the
applied attribute-value list and the partition recombination algorithm are compared. In both cases,
the maximum number of partitions was set to 300. We examined the performance by measuring
the average reward that the system obtained with each of the methods. The results are given
in Fig 10 which shows that the pruning of the applied attribute-value list gives a better overall
performance. As shown by the error bars, the results are statistically significant in the high noise

2The error bars represent a 95% confidence interval.

16

90

80

Average reward
= ~
3 S

o
=]

40

Standard User Goal
— — — Disjunctions in User Goal
T N N T

.)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Error rate

30

Figure 9: System Performance with Disjunctions in the User’s Request

regions, suggesting that it can more effectively manage user goal partitioning in noisy complex
domains compared to the simpler partition recombination approach.

90

80

Average reward
@ ~
3 S

o
=]

40

Pruning N
— — — Recombination|
n n n

30
0

.)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Error rate

Figure 10: System Performance Comparison of Attribute-Value List Pruning (Pruning) and Par-
tition Recombination (Recombination). In both cases, the maximum number of active partitions
was 300.

6.3 The Effect of Different Pruning Thresholds

In order to examine the effect that the pruning has on the system’s performance, three different
pruning thresholds were compared: 3, 30 and 300. In addition, a contrast is given between two
different user simulator setting — one where the user goal stays constant during the dialogue, and
one where the user changes it’s goal during the dialogue. The comparison is given in Fig. 6.3.

In the case when the user goal stays constant during the dialogue, increasing the number of
partitions leads to improved system performance. This is in line with the findings in [6]. It
is important to note that, in contrast to a dramatic difference between 3 and 30, the difference
between30 and 300 is mostly not statistically significant. This suggests that increasing the number
of partitions over 300 would not improve the performance further and this was confirmed by further
tests at 3000.

In the case where the user goal changes during the dialogue, the threshold of 30 gives a more robust

17

performance on higher error rates then the threshold of 300, see Fig. 11(b). This is probably a
consequence of the fact that the HIS system does not have an explicit state transition matrix. Since
a change of user goal can also be achieved by discarding earlier evidence in favour of the most
recent evidence, pruning helps achieve this. Thus, in the HIS model, pruning enables the dialogue
to be more adaptive to inconsistent user behaviour. In real dialogues, users do not normally have
a strictly defined goal but are likely to change their mind depending on the system’s response,
and pruning can facilitate this.

300 max partitions|
— — — 30 max partitions
— — 3 partitions

300 max partitions

©
S
T

— — — 30 max partitions
— - 3 partitions

@
3
T

701

@ ~
3 =)
T T

Average reward
a
3
:

Average reward

S

1y

0 0.05 0.1 0.15 0.2 0.25
Error rate

03

0.35

0.4 0.45

05

IS
S

w
S
T

N
S
T

0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5
Error rate

(a) User goal stays constant during the dialogue (b) User goal changes during the dialogue
Figure 11: Influence of the pruning threshold on system’s performance when user has a constant
goal (a) and when user changes the goal (b)

7 Conclusion

This paper has described how enriching the dialogue state structure with the explicit representation
of complements can improve POMDP-based dialogue modelling in a complex domain. It enables
the use of disjunctions and conjunctions in the user request as well as quantifiers in the system’s
response. More importantly, the notion of complements provides a basis for a pruning technique
that can effectively bound the number of partitions created during a dialogue and thereby ensure
tractability. It supports N-best lists of user dialogue act hypotheses which are large enough to
include all of the informative variants during noisy speech and it can handle dialogues of arbitrary
length. We have shown that this new pruning technique leads to better performance than the
existing recombination method in practical real-world application domains.

Acknowledgements

This research was partly funded by the UK EPSRC under grant agreement EP/F013930/1 and
by the EU FP7 Programme under grant agreement 216594 (CLASSIC project: www.classic-
project.org).

References

[1] E Levin, R Pieraccini, and W Eckert. Using Markov Decision Processes for Learning Dialogue
Strategies. In Int Conf Acoustics, Speech and Signal Processing, Seattle,USA, 1998.

[2] RS Sutton and AG Barto. Reinforcement Learning: An Introduction. Adaptive Computation
and Machine Learning. MIT Press, Cambridge, Mass, 1998.

18

[3]

[4]

B Thomson. Statistical methods for spoken dialogue management. PhD thesis, University of
Cambridge, 2009.

B Thomson and SJ Young. Bayesian update of dialogue state: A POMDP framework for
spoken dialogue systems. Computer Speech and Language, (In press), 2010.

B. Thomson, K. Yu, M. Gasié¢, S. Keizer, F. Mairesse, J. Schatzmann, and S. Young. Evaluating
semantic-level confidence scores with multiple hypotheses. In Interspeech, Brisbane, Australia,
2008.

JD Williams. Incremental Partition Recombiantion for Efficient Tracking of Multiple Dialogue
States. In Int Conf Acoustics Speech and Signal Processing ICASSP, Texas, 2010.

JD Williams, P Poupart, and SJ Young. Factored Partially Observable Markov Decision Pro-
cesses for Dialogue Management. In 4th Workshop on Knowledge and Reasoning in Practical
Dialogue Systems, Edinburgh, 2005.

SJ Young, M Gasi¢, S Keizer, F Mairesse, J Schatzmann, B Thomson, and K Yu. The
Hidden Information State Model: a practical framework for POMDP-based spoken dialogue
management. Computer Speech and Language, 24(2)(150-174), 2010.

19

8 Appendix

8.1 CamlInfo Domain

The CamlInfo domain is a tourist information for Cambridge, whereby the user can ask for infor-
mation about a restaurant, a bar, a hotel, a museum or other tourist attractions in the local area.
The database consists of more than 400 entities each of which has up to 10 attributes that the
user can query. The possible attribute-value pairs are organised in an hierarchical ontology, see

Table 6.
entity — venue(type, name, area, near, addr, phone, postcode)
type «— placetostay(staytype, hasinternet, hasparking, price, pricerange, stars)
type — placetoeat(eattype, pricerange, openhours, price)
type — placetodrink(drinktype, pricerange, openhours, price)
type — placetosee(seetype, pricerange, openhours)
type — entsvenue(entstype)
type — univenue(unitype, openhours)
type — sportsvenue(sport)
type — transvenue(transtype)
type — shopvenue(shoptype, openhours)
type — amenity(amtype)
amtype — hospital()
amtype «— policestation()
amtype «— bank(openhours)
amtype — postoffice(openhours)
amtype — touristinfo(openhours)
shoptype «— supermarket()
shoptype <« shoppingcentre()0.1
transtype «— airport()
transtype <« busstation()
transtype <« trainstation(openhours)
staytype — guesthouse()
staytype — hotel()
eattype — restaurant(food)
drinktype <« bar(childrenallowed, hasinternet, hasmusic, hastv, openhours, price)
drinktype <« coffeeshop()
drinktype <« pub(childrenallowed, hasfood, hasinternet, hastv)
seetype — architecture()
seetype — museum|()
seetype — park()
unitype — college()
unitype — department()
unitype — library()
entstype — cinema()
entstype — theatre()
entstype — nightclub(openhours, price, pricerange)
entstype — entertainment()
entstype — boat()
entstype — concerthall()
food = { American, Cafe food, Chinese, ... }
pricerange = { free, cheap, moderate , ... }
sport = { badmintoncourt, cricketfield, footballfield , ... }
area = { girton, kingshedges, arbury , ... }

Table 6: CamInfo Ontology Rules

20

8.2 Pseudo Code for Pruning

void Partition::prune(AttributeValuePair d)
{
PartitionPtr upper, lower;
Stack<float>& s;
if (this->has_children)
for each child c of this starting from the oldest
c->prune(d) ;
if (this->contains(complement(d)))
{
upper=this;
for each child c of upper starting from the oldest
if (c->contains(d))
{
lower=c;
break;
}
lower->deletePartitions(s);
s.push(lower->belief);
delete(lower);
upper->updateBeliefandRemoveComplements(s,d);
}
}
void Partition::deletePartitions(Stack<float>& s)
{
for each child c of this starting from the oldest
{
c->deletePartitions(s);
c->push(belief (c));
}
delete(children);
3
void Partition::updateBeliefandRemoveComplements(Stack<float>&d, AttributeValuePair d)
{
this->belief+=s.pop();
this->removeComplement (d) ;
for each child c starting from oldest that contains negation of d
{
c->updateBeliefandRemoveNegations(s,d);
if (s->size()==0)
break;

8.3 Typical Long Negotiative Dialogue

In this section an example of a typical long negotiative dialogue is given. It consists of 17 dialogue
turns in each of which the system prompt and the true user action are given. In addition, the
system’s dialogue act and a scored list of the N-best user dialogue acts are provided, together with
the probability of the most likely hypothesis and a sorted list of applied attribute-value pairs with
their marginal probabilities. The attribute-value pairs that are in bold font match the most likely
partition.

There are several points of the dialogue to note. Firstly, turns 4-6 show how the user goal changes

21

during the dialogue. Secondly, turns 8 and 11 show the capability of the system to deal with long
N-best inputs®. Furthermore, there are also examples of how the system deals with a range of
problems, such as mis-recognitions in turns 9, 11 and 12, a user mistake in turn 10 and a silence
detection problem in turn 13. Moreover, in turns 8, 9 and 11-16 pruning of the lowest probability
attribute value pairs takes place. Finally, it is also interesting to note how the probability of
the top hypothesis changes over time. For example, in turn 12, where a mis-recognition occurs,
the probability of the top hypothesis is very low, only 0.013. This is due to the fact that the
user through-out the dialogue asked for a place to stay and in turn 12 the top partition contains
a restaurant. However, in turn 14 and 15 when the system offered a hotel and user asked for
an address, the probability increases from 0.025 to 0.308 showing how the system became more
confident about the user’s requirements.

1 System act hello()
System prompt Thank you for calling the Cambridge Information system. How may I help you?
True user action HI ’'M LOOKING FOR A PLACE TO STAY
N-best input hello(type=placetostay,task=find) 1.00
hello(type=placetostay) 0.00
hello(type=placetostay,name=“The Place” ;task=find) 0.00
Top hypothesis prb | 0.676
Applied attributes | task=find 0.997; entity=venue 0.994; type=placetostay 0.987; name=The Place 0.312
2 System act confreq(type=placetostay,near)
System prompt You are looking for a place to stay. Are you looking for somewhere near a particular venue?
True user action MAYBE SOMEWHERE IN THE CENTRE
N-best input inform(area=citycentre) 1.00
Top hypothesis prb | 0.900
Applied attributes task=find 0.999; entity=venue 0.998; area=citycentre 0.972
type=placetostay 0.932; name=The Place 0.012
3 System act inform(name=“Gonville Hotel” ,type=placetostay,area=citycentre)
System prompt The Gonville Hotel is a great place to stay and it’s in the central part of town.
True user action IS IT EXPENSIVE
N-best input confirm(pricerange=expensive) 1.00
inform(pricerange=expensive) 0.00
Top hypothesis prb | 0.456
Applied attributes task=find 0.999; entity=venue 0.998; type=placetostay 0.991
name=Gonville Hotel 0.978; area—=citycentre 0.930; pricerange—expensive 0.495
name=The Place 0.006
4 System act inform(name=“Gonville Hotel” ,pricerange=none)

System prompt
True user action
N-best input

Top hypothesis prb
Applied attributes

I am sorry but there is no information about the price range for the Gonville Hotel.
DO YOU HAVE ANY CHEAP HOTELS

inform(pricerange=cheap,=hotel) 0.96

inform(=hotel) 0.04

0.290

task=find 0.999; entity=venue 0.998; type=placetostay 0.987
area=citycentre 0.806; staytype=hotel 0.708; pricerange=cheap 0.585
name=Gonville Hotel 0.523; pricerange=expensive 0.201; name=The Place 0.014

Table 7: A typical long negotiative dialogue (turns 1-4)

3The confidence scores are here rounded to two decimals, but in fact they are always greater than zero.

22

System act
System prompt

True user action
N-best input

Top hypothesis prb
Applied attributes

inform(name=none,type=placetostay,area=citycentre,pricerange!=dontcare)
There is no place to stay in the central area
for which I have any information about the price range.
HOW ABOUT RIVERSIDE
reqalts(area=riverside) 0.90
inform(area=riverside) 0.05
reqalts() 0.04
reqalts(=bar,area=riverside) 0.01
null() 0.00
0.213
task=find 0.999; entity=venue 0.998; area=riverside 0.775; type=placetostay 0.752
staytype=hotel 0.585; pricerange=cheap 0.419; name=Gonville Hotel 0.273;
type=placetodrink 0.198; area=citycentre 0.152
pricerange=expensive 0.150; drinktype=bar 0.092; name=The Place 0.068

System act
System prompt
True user action
N-best input

Top hypothesis prb
Applied attributes

inform(name=none,type=placetostay,pricerange=cheap)

There is no place to stay in the cheap price range.

HOW ABOUT SOMETHING MODERATE

reqalts(pricerange=moderate) 0.83

inform(pricerange=moderate) 0.17

0.065

task=find 0.999; entity=venue 0.998; pricerange=moderate 0.847; area=riverside 0.612
type=placetostay 0.593; type=placetodrink 0.394; staytype=hotel 0.338

name=Gonville Hotel 0.247; area=citycentre 0.218; drinktype=bar 0.193; name=The Place 0.138
pricerange=cheap 0.037; pricerange=dontcare 0.036; pricerange=expensive 0.033

System act
System prompt
True user action
N-best input

Top hypothesis prb
Applied attributes

inform(name=none,type=placetostay,staytype=hotel,area=riverside,pricerange=moderate)
There is no hotel in the riverside area in the moderate price range.

I DON'T CARE ABOUT THE AREA

inform(=dontcare) 1.00

null() 0.00

0.116

task=find 0.999; entity=venue 0.998; name=dontcare 0.569; type=placetostay 0.512
area=dontcare 0.491; type=placetodrink 0.458; pricerange=dontcare 0.433
pricerange=moderate 0.357; drinktype=bar 0.252; area=riverside 0.252

staytype=hotel 0.249; area=citycentre 0.131; name=Gonville Hotel 0.124

name=The Place 0.103; pricerange=cheap 0.061; pricerange=expensive 0.059

System act
System prompt

True user action
N-best input

Top hypothesis prb
Applied attributes

inform(name=“The Eagle” ,type=placetodrink,drinktype=bar,area=citycentre,pricerange=none)
The Eagle, which is in the central part of town, is a great bar.

I am sorry but there is no information about the price range for it.

I’'M LOOKING FOR A PLACE TO STAY

inform(type=placetostay,task=find) 0.99

inform(type=placetostay,name=“The Place” task=find) 0.01

inform(type=placetostay) 0.00

inform(=trainstation,name=“The Place” task=find) 0.00
inform(type=placetostay,name=“Cambridge Police Station” task=find) 0.00
hello(type=placetostay) 0.00

3 attribute-value pairs are pruned

0.080

task=find 0.999; entity=venue 0.998; type=placetostay 0.814
pricerange=moderate 0.516; staytype=hotel 0.421; area=riverside 0.321;
pricerange=dontcare 0.259; area=dontcare 0.254; area=citycentre 0.196
type=placetodrink 0.125; name=Gonville Hotel 0.093; drinktype=bar 0.065
name=dontcare 0.065; name=The Eagle 0.049; name=Cambridge Police Station 0.049
name=The Place 0.049; type=transvenue 0.039; transtype=trainstation 0.020

Table 8: A typical long negotiative dialogue (cont., turns 5-8)

23

9 System act inform(name=none,type=placetostay,staytype=hotel,area=riverside,pricerange=moderate)
System prompt There is no hotel in the riverside area in the moderate price range.
True user action I DON'T CARE ABOUT THE AREA
N-best input inform(=dontcare) 0.57
null() 0.28
nform() 0.15
7 attribute-value pairs are pruned
Top hypothesis prb | 0.069
Applied attributes task=find 0.998; entity=venue 0.995; type=placetostay 0.958
pricerange=dontcare 0.435; staytype=hotel 0.420; area=dontcare 0.386
pricerange=moderate 0.365; name=dontcare 0.205; area=riverside 0.187
area=citycentre 0.182; name=Gonville Hotel 0.117
10 System act inform(name=“City Centre North B and B” type=placetostay,staytype=guesthouse,
area=arbury,pricerange=none)
System prompt City Centre North is an outstanding guesthouse in the Arbury part of town,
also I am sorry but there is no information about the price range for it.
True user action DO YOU HAVE ANY MODERATE RESTAURANT UH HOTEL
N-best input inform(pricerange=moderate,=restaurant,=hotel) 0.91
inform(=restaurant,=hotel) 0.05
inform(pricerange=moderate,=restaurant) 0.04
Top hypothesis prb | 0.023
Applied attributes task=find 0.999; entity=venue 0.998; type=placetostay 0.743
pricerange=dontcare 0.399; pricerange=moderate 0.362;
name=City Centre North B and B 0.301; area=dontcare 0.277; staytype=guesthouse 0.261
type=placetoeat 0.216; staytype=hotel 0.209; name=dontcare 0.188; area=citycentre 0.182
area=riverside 0.169; area=arbury 0.169; eattype=restaurant 0.124; name=Gonville Hotel 0.101
11 System act inform(name=“Finches Bed and Breakfast” type=placetostay,area=girton,
pricerange=none,staytype=guesthouse)
System prompt Finches Bed and Breakfast is a great guesthouse in the Girton part of town and
I am sorry but there is no information about the price range for it.
True user action I’'M LOOKING FOR A MODERATELY PRICED PLACE TO STAY
N-best input inform(pricerange=moderate,task=find) 0.79
inform(name=“The Place” pricerange=moderate,task=find) 0.09
inform (type=placetostay,pricerange=moderate,task=find) 0.06
inform (pricerange=free,pricerange=moderate,task=find) 0.04
inform(type=placetostay,pricerange=moderate,name=“The Place” task=find) 0.01
3 attribute-value pairs are pruned
Top hypothesis prb | 0.062
Applied attributes task=find 0.999; entity=venue 0.998 type=placetostay 0.974
staytype=guesthouse 0.344; staytype=hotel 0.270; area=dontcare 0.206
area=girton 0.168; area=riverside 0.155; area=arbury 0.150; area=citycentre 0.134
name=City Centre North B and B 0.063; pricerange=dontcare 0.074; pricerange=free 0.072
name=dontcare 0.064; name=Finches Bed and Breakfast 0.063; name=The Place 0.063
12 System act inform(name=“Express by Holiday Inn Cambridge” ,area=barnwell,

System prompt
True user action

N-best input

Top hypothesis prb
Applied attributes

type=placetostay,hasinternet=true,hasparking=true,stars=*2")

The Express Holiday Inn has an internet connection and a parking lot and it’s in the Barnwell
part of town. This place, which has 2 stars, is a great place to stay.

WHAT’S THE PRICERANGE

inform(=restaurant) 0.89

null() 0.11

5 attribute-value pairs are pruned

0.013

task=find 0.999; entity=venue 0.999; type=placetostay 0.815

pricerange=moderate 0.594; hasinternet=true 0.408; hasparking=true 0.408;

stars=2 0.407; name=Express by Holiday Inn Cambridge 0.327; staytype=guesthouse 0.279

staytype=hotel 0.251; name=City Centre North B and B 0.224; type=placetoeat 0.171

area=dontcare 0.161; eattype=restaurant 0.146; area=barnwell 0.145

area=riverside 0.142; area=girton 0.141; area=arbury 0.133; area=citycentre 0.129

Table 9: A typical long negotiative dialogue (cont., turns 9-12)

24

13

System act
System prompt
True user action

N-best input

Top hypothesis prb
Applied attributes

inform(name=*“Riverside Restaurant and Granta Bar” ,area=riverside,eattype=restaurant,
type=placetoeat,food=Traditional,pricerange=expensive,near=“Queens’ College”)
The Riverside Restaurant is an outstanding restaurant in the riverside part of town
in the expensive price range near Queens’ College, also it serves traditional food.
I’'M LOOKING
inform(task=find) 0.50
null() 0.50
8 attribute-value pairs are pruned
0.008
task=find 0.999; entity=venue 0.997; type=placetostay 0.830;
hasinternet=true 0.422; hasparking=true 0.422; stars=2 0.416; pricerange=moderate 0.414
staytype=guesthouse 0.408; pricerange=expensive 0.286; area=dontcare 0.260
area=riverside 0.252; area=barnwell 0.243; name=Express by Holiday Inn Cambridge 0.170
name=Riverside Restaurant and Granta Bar 0.168; type=placetoeat 0.146
eattype=restaurant 0.095; food=Traditional 0.047

14

System act
System prompt
True user action
N-best input

Top hypothesis prb
Applied attributes

inform(name=*“The Cricketers” area=riverside,near=“Ruskin Gallery”)

The Cricketers is in the riverside part of town near the Ruskin Gallery.

I’'M LOOKING FOR A FOR A HOTEL IN THE MODERATE PRICERANGE
inform(pricerange=moderate,=hotel,task=find) 0.96
inform(=hotel,pricerange=moderate) 0.04

5 attribute-value pairs are pruned

0.025

task=find 0.999; entity=venue 0.999; type=placetostay 0.993
pricerange=moderate 0.722; staytype=hotel 0.722; hasinternet=true 0.503
hasparking=true 0.503; stars=2 0.493; textbfarea=dontcare 0.264; area=riverside 0.244
area=barnwell 0.244; name=The Cricketers 0.206; staytype=guesthouse 0.135
pricerange=expensive 0.135

15

System act
System prompt

True user action
N-best input

Top hypothesis prb
Applied attributes

inform(name=“The Cambridge Belfry” type=placetostay,staytype=hotel,
pricerange=moderate,area=girton,hasinternet=true,hasparking=true)
The Cambridge Belfry, which has an internet connection and parking spaces,
is an outstanding hotel. It’s in the moderate price range and in the Girton part of town.
WHAT’S THE ADDRESS
request(addr) 1.00
3 attribute-value pairs are pruned
0.308
task=find 0.999; entity=venue 0.998; type=placetostay 0.990
pricerange=moderate 0.854; staytype=hotel 0.854; name=The Cambridge Belfry 0.79
hasinternet=true 0.791; hasparking=true 0.791; area=dontcare 0.390
area=girton 0.365; stars=2 0.199; area=barnwell 0.081; area=riverside 0.081

16

System act
System prompt
True user action
N-best input

Top hypothesis prb
Applied attributes

inform(name=“The Cambridge Belfry” ,addr=“Back Lane, Cambourne”)

The Cambridge Belfry is located on Back Lane, Cambourne.

AND THE PHONE NUMBER

request(phone) 1.00

2 attribute-values are pruned

0.427

task=find 0.999; entity=venue 0.998; type=placetostay 0.993
hasinternet=true 0.912; hasparking=true 0.912

pricerange=moderate 0.912; stars=2 0.081; staytype=hotel 0.912
name=The Cambridge Belfry 0.914; area=dontcare 0.482; area=girton 0.460

17

System act
System prompt

True user action

inform(name=“The Cambridge Belfry” ,phone=*01954714600")
The phone number of The Cambridge Belfry is 01954714600.
in the expensive price range near Queens’ College, also it serves traditional food.
THANKS BYE
Hanging up

Table 10: A typical long negotiative dialogue (cont., turns 13-17)

25

