
POMDP-based dialogue manager adaptation to extended domains

M. Gašić, C. Breslin, M. Henderson, D. Kim, M. Szummer, B. Thomson, P. Tsiakoulis and S. Young
Cambridge University Engineering Department

{mg436,cb404,mh521,dk449,mos25,brmt2,pt344,sjy}@eng.cam.ac.uk

Abstract
Existing spoken dialogue systems are typ-
ically designed to operate in a static and
well-defined domain, and are not well
suited to tasks in which the concepts and
values change dynamically. To handle dy-
namically changing domains, techniques
will be needed to transfer and reuse ex-
isting dialogue policies and rapidly adapt
them using a small number of dialogues in
the new domain. As a first step in this di-
rection, this paper addresses the problem
of automatically extending a dialogue sys-
tem to include a new previously unseen
concept (or slot) which can be then used
as a search constraint in an information
query. The paper shows that in the con-
text of Gaussian process POMDP optimi-
sation, a domain can be extended through
a simple expansion of the kernel and then
rapidly adapted. As well as being much
quicker, adaptation rather than retraining
from scratch is shown to avoid subjecting
users to unacceptably poor performance
during the learning stage.

1 Introduction

Existing spoken dialogue systems are typically de-
signed to operate in a static and well-defined do-
main, and are not well suited to tasks in which
the concepts and values change dynamically. For
example, consider a spoken dialogue system in-
stalled in a car, which is designed to provide in-
formation about nearby hotels and restaurants. In
this case, not only will the data change as the
car moves around, but the concepts (or slots) that
a user might wish to use to frame a query will
also change. For example, a restaurant system de-
signed to be used within cities might not have the
concept of ‘al fresco’ dining and could not there-
fore handle a query such as “Find me a French

restaurant where I can eat outside”. In order to
make this possible, techniques will be needed to
extend and adapt existing dialogue policies.

Adaptation can be viewed as a process of im-
proving action selection in a different condition to
the one in which the policy was originally trained.
While adaptation has been extensively studied in
speech recognition (see an overview in (Gales and
Young, 2007)), in spoken dialogue systems it is
still relatively novel and covers a wide range of
possible research topics (Litman and Pan, 1999;
Litman and Pan, 2002; Georgila and Lemon, 2004;
Janarthanam and Lemon, 2010).

A recent trend in statistical dialogue modelling
has been to model dialogue as a partially ob-
servable Markov decision process (POMDP). This
provides increased robustness to errors in speech
understanding and automatic dialogue policy op-
timisation via reinforcement learning (Roy et al.,
2000; Zhang et al., 2001; Williams and Young,
2007; Young et al., 2010; Thomson and Young,
2010). A POMDP-based dialogue manager main-
tains a distribution over every possible dialogue
state at every dialogue turn. This is called the
belief state. Based on that distribution the sys-
tem chooses the action that gives the highest ex-
pected reward, measured by the Q-function. The
Q-function for a belief state and an action is the
expected cumulative reward that can be obtained
if that action is taken in that belief state. The opti-
misation typically requires O(105) to O(106) di-
alogues, so is normally done in interaction with a
simulated user (Jurčı́ček et al., 2011b).

In reinforcement learning, policy adaptation has
been addressed in the context of transfer learn-
ing (Taylor and Stone, 2009). The core idea is to
exploit expertise gained in one domain (source do-
main) to improve learning in another domain (tar-
get domain). A number of techniques have been
developed but they have not been previously ap-
plied to dialogue management.

Gaussian process (GP) based reinforcement
learning (Engel, 2005) has been recently applied
to POMDP dialogue policy optimisation in or-
der to exploit the correlations between different
belief states and thus reduce the number of dia-
logues needed for the learning process (Gašić et
al., 2010).

An important feature of a Gaussian process is
that it can incorporate a prior mean and variance
for the function it estimates, in this case the Q-
function. Setting these appropriately can signif-
icantly speed up the process of learning. If the
mean or the variance are estimated in one envi-
ronment, for example a particular user type or a
particular domain, they can be used as a prior for
adaptation in a different environment, i.e. another
user type or another domain. A Gaussian process
does not depend on the belief state but on the cor-
relation between two belief states encoded by the
kernel function. Therefore, if one defines a kernel
function for two belief states in one domain, the
policy can be used in a different domain, provided
that the correlations between belief states follow a
similar pattern.

This paper explores the problem of extending an
existing domain by introducing a previously un-
seen slot. Specifically, a simple restaurant system
is considered which allows a user to search for
restaurants based on food-type and area. This do-
main is then extended by introducing an additional
price-range slot. The policy is trained for the basic
two-slot domain and then reused in the extended
domain by defining a modified kernel function and
using adaptation. This strategy not only allows for
the knowledge of a previously trained policy to be
reused but it also guards against poor performance
in the early stages of learning. This is particularly
useful in a real-world situation where the adapta-
tion is performed in direct interaction with users.
In addition, a potential application of this tech-
nique to reduce the number of training dialogues
is examined. The domain is decomposed into a
series of simple domains and the policy is grad-
ually adapted to the final domain with a smaller
number of dialogues than are normally needed for
training.

The rest of the paper is organised as follows. In
Section 2 the background on Gaussian processes

in POMDP optimisation is given. Then Section 3
gives a description of the Bayesian Update of Di-
alogue State dialogue manager, which is used as
a test-bed for the experiments. In Section 4, a
simple method of kernel modification is described
which allows a policy trained in the basic domain
to be used in an extended domain. Methods of
fast adaptation are investigated in Section 5 and
this adaptation strategy is then tested via interac-
tion with humans using the Amazon Mechanical
Turk service in Section 6. Finally, the use of re-
peated adaptation to speed up the process of policy
optimisation by learning gradually from simple to
more complex domains is explored in Section 7,
before presenting conclusions in Section 8.

2 Gaussian processes in POMDPs

The role of a dialogue policy π is to map each be-
lief state b ∈ B into an action a ∈ A so as to
maximise the expected cumulative reward, a mea-
sure of how good the dialogue is.

The expected cumulative reward is defined by
the Q-function as:

Q(b, a) = Eπ

(
T∑

τ=t+1

γτ−t−1rτ |bt = b, at = a

)
,

(1)
where rτ is the reward obtained at time τ , T is
the dialogue length and γ is the discount factor,
0 < γ ≤ 1. Optimising the Q-function is then
equivalent to optimising the policy π.

A Gaussian process (GP) is a non-parametric
Bayesian probabilistic model that can be used
for function regression (Rasmussen and Williams,
2005). It is fully defined by a mean and a kernel
function which defines prior function correlations.

GP-Sarsa is an on-line RL algorithm that mod-
els the Q-function as a Gaussian process (Engel
et al., 2005), Q(b, a) ∼ GP (0, k((b, a), (b, a)))
where the kernel k(·, ·) is factored into separate
kernels over the belief state and action spaces
kC(b,b

′)kA(a, a
′). For a sequence of belief state-

action pairs Bt = [(b0, a0), . . . , (bt, at)]T visited
in a dialogue and the corresponding observed im-
mediate rewards rt = [r1, . . . , rt]T, the posterior
of the Q-function for any belief state-action pair
(b, a) is defined by the following:

Q(b, a)|rt,Bt ∼ N (Q(b, a), cov((b, a), (b, a))),

Q(b, a) = kt(b, a)
THT

t (HtKtH
T
t + σ2HtH

T
t)
−1rt,

cov((b, a), (b, a)) = k((b, a), (b, a))− kt(b, a)
THT

t (HtKtH
T
t + σ2HtH

T
t)
−1Htkt(b, a)

Ht =

1 −γ · · · 0 0
0 1 · · · 0 0
...

.
...

...
0 · · · 0 1 −γ

 ,
kt(b, a) = [k((b0, a0), (b, a)), . . . , k((bt, at), (b, a))]T,
Kt = [kt((b

0, a0)), . . . ,kt((b
t, at))]

(2)

where Kt is the Gram matrix – the matrix of the
kernel function values for visited points Bt, Ht is
a linear operator that captures the reward looka-
head from the Q-function (see Eq. 1) and σ2 is
an additive noise parameter which controls how
much variability in theQ-function estimate we ex-

pect during the process of learning.
If we assume that the Gaussian process

places a prior mean on the Q-function,
Q(b, a) ∼ GP (m(b, a), k((b, a), (b, a)))
then the posterior mean Q(b, a) is given by (Ras-
mussen and Williams, 2005):

Q(b, a) = m(b, a) + kt(b, a)
THT

t (HtKtH
T
t + σ2HtH

T
t)
−1(rt −mt), (3)

where mt = [m(b0, a0), . . . ,m(bt, at)]T. The
estimate of the variance is same as in Eq. 2.

The Q-function posterior in Eqs. 2 and 3
defines a Gaussian distribution for every be-
lief state-action pair. Thus, when a new be-
lief state b is encountered, for each action a ∈
A, there is a Gaussian distribution Q(b, a) ∼
N (Q(b, a), cov((b, a), (b, a)))). Sampling from
these Gaussian distributions gives a set of Q-
values for each action {Q(b, a) : a ∈ A} from
which the action with the highest sampledQ-value
can be selected:

π(b) = argmax
a
{Q(b, a) : a ∈ A} . (4)

In this way, the stochastic model of theQ-function
is effectively transformed into a stochastic policy
model, which can be optimised to maximise the re-
ward (Geist and Pietquin, 2011; Gašić et al., 2011;
Gašić et al., 2012).

Due to the matrix inversion in Eq. 2, the compu-
tational complexity of calculating the Q-function
posterior is O(t3), where t is the number of data
points in Bt, and this poses a serious computa-
tional problem. The algorithm used here to ap-
proximate the Gaussian process is the kernel span

sparsification method described in (Engel, 2005).
In this case, only a set of representative data points
is retained – called the dictionary of visited points.

3 BUDS dialogue manager

The Bayesian Update of Dialogue State (BUDS)
dialogue manager is a POMDP-based dialogue
manager (Thomson and Young, 2010) which fac-
torises the dialogue state into conditionally de-
pendent elements. These elements are arranged
into a dynamic Bayesian network, which allows
for their marginal probability distributions to be
updated during the dialogue. Thus, the belief
state of the BUDS dialogue manager consists of
the marginal posterior probability distribution over
hidden nodes in the Bayesian network. The hidden
nodes in the BUDS system consist of the history
nodes and the goal nodes for each concept in the
dialogue. For instance in a restaurant information
domain these include area, food-type, address.
The history nodes define possible dialogue histo-
ries for a particular concept, eg. system-informed,
user-requested. The goal nodes define possible
values for a particular concept, eg. Chinese, In-
dian. The role of the policy π is then to map each

belief state into a summary action a from the sum-
mary action space A. Once a summary action is
found it is heuristically mapped into the master
action that the system finally takes (Gašić et al.,
2012). The master actions are composed of dia-
logue act type and list of slot value pairs. There are
15 dialogue act types in the BUDS system that fa-
cilitate not only simple information providing sce-
narios but also more complex dialogues where the
user can change their mind and ask for alterna-
tives.

To apply GP policy optimisation, a kernel func-
tion must be defined on both the belief state space
B and the action space A. The kernel function
over the belief state b is constructed from the sum
of individual kernels over the hidden node distri-
butions, such that the kernel function of two cor-
responding nodes is based on the expected likeli-
hood kernel (Jebara et al., 2004), which is also a
simple linear inner product:

kB(b,b
′) =

∑
h

〈bh,b′h〉, (5)

where bh is the probability distribution encoded
in the hth hidden node. This kernel gives the ex-
pectation of one belief state distribution under the
other.

For history nodes, the kernel is a simple inner
product between the corresponding node distribu-
tions. While it is possible to calculate the kernel
function for the goal nodes in the same way as for
the history nodes, in this case, the choice of sys-
tem action, such as confirm or inform, does not
depend on the actual values. It rather depends on
the shape of the distribution and, in particular, it
depends on the probability of the most likely value
compared to the rest. Therefore, to exploit the cor-
relations further, the kernel over two goal nodes
is calculated as the dot product of vectors, where
each vector represents the corresponding distribu-
tion sorted into order of probability. The only ex-
ceptions are the goal for the method node and the
discourse act node. The former defines whether
the user is searching for a venue by name or by
constraints and the latter defines which discourse
act the user used, eg. acknowledgement, thank you.
Their kernels are calculated in the same way as for
the history nodes.

For the action space kernel, the δ-kernel is used
defined by:

kA(a, a
′) = δa(a

′). (6)

where δa(a′) = 1 iff a = a′.

3.1 TopTable domain
The TopTable domain consists of restaurants in
Cambridge, UK automatically extracted from the
TopTable web service (TopTable, 2012). There are
about 150 restaurants and each restaurant has 7 at-
tributes – slots. This results in a belief space that
consists of 25 concepts where each concept takes
from 3 to 150 values and each value has a proba-
bility in [0, 1]. The summary action space consists
of 16 summary actions.
3.2 The agenda-based simulated user
In training and testing a simulated user was used.
The agenda-based user simulator (Schatzmann,
2008; Keizer et al., 2010) factorises the user state
into an agenda and a goal. The goal ensures
that the user simulator exhibits consistent, goal-
directed behaviour. The role of the agenda is to
elicit the dialogue acts that are needed for the user
simulator to fulfil the goal. In addition, an er-
ror model adds confusions to the simulated user
input such that it resembles those found in real
data (Thomson et al., 2012). The length of the N-
best list was set to 10 and the confusion rate was
set to 15% during training and testing.1 This error
rate means that 15% of time the true hypothesis is
not in the N-best list. Intermediate experimenta-
tion showed that these confusion rates are typical
of real data.

The reward function was set to give a reward
of 20 for successful dialogues, zero otherwise. In
addition, 1 is deducted for each dialogue turn to
encourage shorter dialogues. The discount factor
γ is set to 1 and the dialogue length is limited to
30 turns.

4 Extended domains

Transfer learning is a reinforcement learning tech-
nique which address three problems:

• given a target domain, how to select the
most appropriate source domain from a set of
source domains,

• given a target and a source domain how to
find the relationship between them, and

• given a target and a source domain and the
relationship between them, how to effectively
transfer knowledge between them.

1Except of course where the system is explicitly tested on
varying noise levels.

Here we assume that we are given a source and
a target domain and that the relationship between
them is defined by mapping the kernel function.
Knowledge transfer is then effected by adapting
the source domain policy for use in the target do-
main. For the latter, two forms of adaptation are
investigated: one simply continues to update the
set of source data dictionary points with new dic-
tionary points, the second uses the source domain
posterior as a prior for the new target domain.

In this case, the source is a basic restaurant do-
main with slots name, area, food-type, phone, ad-
dress, and postcode. The extended target domain
has an additional price-range slot. We are inter-
ested primarily in training the policy on the ba-
sic domain and testing it on the extended domain.
However, since real applications may also require
a slot to be forgotten, we also investigate the re-
verse where the policy is trained in the extended
domain and tested on the basic domain.

In order to enable the required cross domain
portability, a kernel function defining the correla-
tion between belief states from differing domains
is needed. Since the extended domain has an ex-
tra slot and thus extra hidden nodes, we need to
define the correlations between the extra hidden
nodes and the hidden nodes in the belief state of
the basic domain. This can be performed in vari-
ous ways, but the simplest approach is to specify
which slot from the basic domain is most similar
to the new slot in the extended domain and then
match their corresponding hidden nodes. In that
way the belief state kernel function between two
belief states bB, bE for the basic B and the ex-
tended E domain becomes:

kB(b
B,bE) =

∑
h∈B
〈bB

h ,b
E
h〉+

∑
e/∈B

〈bB
l(e),b

E
e 〉, (7)

where h are the hidden nodes in the basic domain,
e are the hidden nodes in the extended domain and
function l : E→ B for each hidden node that does
not exist in the basic domain finds its appropriate
replacement. In the particular case studied here,
the slot area is most similar to the new price-range
slot since they both have a relatively small number
of values, about 5. Hence, l(price-range)→ area.
If the cardinality of the mapped slots differ, the
shorter is padded with zeros though other forms of
normalisation are clearly possible.

The (summary) action space for the extended
domain has more actions than the basic domain.

For example, one action that exists in the extended
domain and does not exist in the basic domain is
request(price-range). To define the kernel func-
tion between these sets of actions, one can specify
for each extra action in the extended domain its
most similar action in the basic domain:

kA(a
B, aE) =

{
δaB(a

E) aE ∈ AB,
δaB(L(a

E)) aE /∈ AB,
(8)

where function L : AE → AB for each action
that does not exist in the basic domain finds its
replacement action.

Functions L and l are here defined manually.
However, a simple but effective heuristic would be
to find for each new slot in the extended domain, a
slot in the basic domain with similar cardinality.

Porting in the reverse direction from the ex-
tended to the basic domain is easier since one can
simply disregard the extra hidden nodes and ac-
tions in the kernel calculation.

To experimentally examine the extent to which
this method supports cross domain portability, we
trained policies for both domains until conver-
gence, using 105 dialogues on the simulated user.
We then cross tested them on the mismatching do-
mains at varying user input error rates. The results
are given in Fig. 1.

0 10 20 30 40 50
ErrorRate

2

0

2

4

6

8

10

12

Re
w

ar
d

bsc-trn&tst
extd-trn&tst
extd-trn&bsc-tst
bsc-trn&extd-tst

Figure 1: Cross testing policies trained on differ-
ent domains. bsc refers to the basic domain, extd is
the extended domain, trn is training and tst is test-
ing.

From the results it can be seen that the policy
trained for the basic domain has a better perfor-
mance than the policy trained on the extended do-
main, when tested on the matching domain (com-

pare bsc-trn&tst with extd-trn&tst). The extended do-
main has more slots so it is more difficult for the
system to fulfil the user request, especially in noisy
conditions. Secondly, the performance of the pol-
icy trained on the extended domain and tested on
the basic domain is close to optimal (compare bsc-
trn&tst with extd-trn&bsc-tst). However, the pol-
icy trained on the basic domain and tested on the
extended domain has much worse performance
(compare bsc-trn&extd-tst with extd-trn&tst). It is
hard for the policy to adequately extrapolate from
the basic to the extended domain. This difference
in performance, however, motivates the need for
adaptation and this is investigated in the next sec-
tion.

5 Adaptation

Adaptation of a policy trained on one domain to
another can be performed in several ways. Here
we examine two adaptation strategies similar to
the method described in (Taylor et al., 2007),
where every action-value for each state in the tar-
get domain is initialised with learned source do-
main values.

The first strategy is to take the policy trained in
the source domain and simply continue training it
in the target domain until convergence. In Gaus-
sian process reinforcement learning, this means
that we assume a zero-mean prior on the Gaussian
process for theQ-function and let the dictionary of
visited points Bt from Eq. 2 consist of both points
visited in the source domain and the extended tar-
get domain, making sure that the Gram matrix
Kt uses extended domain kernel function where
necessary. However, the estimate of the variance
decreases with the number of visited points (see
Eq. 2). The danger therefore when performing
adaptation in this way is that the estimate of vari-
ances obtained in the source domain will be very
small since the policy has already been trained un-
til convergence with a large number of dialogues.
As a consequence, the rate of exploration defined
by sampling in Eq. 4 will be reduced and thus lead
to the subsequent optimisation in the new target
domain falling prematurely into a local optimum.

As an alternative, we propose another adapta-
tion strategy. The estimate of the posterior of the
mean for the Q-function, Q in Eq. 2, from the pol-
icy trained on the basic domain can be taken to be
the prior of the mean when the policy is trained on
the extended domain as in Eq. 3. More precisely, if

Qbsc is the posterior mean of the policy trained on
the basic domain then mextd = Qbsc. In this case
it is also important to make sure that the kernel
function used to calculateQbsc is redefined for the
extended domain where necessary. The prior on
the variance is the original kernel function renor-
malised:

k((b, a), (b′, a′))← k((b,a),(b′,a′))√
k((b,a),(b,a))k((b′,a′),(b′,a′))

.

(9)
Given that the estimate of the mean provides rea-
sonable performance, it is not necessary to place
a flat prior on the variance of the Q-function and
therefore the kernel is normalised as in Eq. 9.

When comparing adaptation strategies, we are
interested in two aspects of performance. The first
is the performance of the policy during training.
The second is how quickly the policy reaches the
optimal performance. For that reason we adopt
the following evaluation scheme. After every 100
adaptation dialogues we test the partially opti-
mised policy with 1000 simulated dialogues, dif-
ferent to the ones used in adaptation. These 1000
dialogues are the same for every test point on the
graph. The results are given in Fig. 2.

0 200 400 600 800 1000 1200 1400 1600
Training dialogues

20

15

10

5

0

5

10

Re
w

ar
d

PRIOR
ADAPT
TRAIN
bsc-trn&extd-tst
extd-trn&tst

Figure 2: Different adaptation strategies

The lower horizontal line represents the perfor-
mance of the policy trained on the basic source
domain and tested on the extended target domain.
This is the baseline. The upper horizontal line
represents the policy trained until convergence on
the extended domain and also tested on the ex-
tended domain. This provides the gold standard.
The adaptation strategy that takes both the mean
and variance of the policy trained on the basic do-
main and retrains the policy on the extended do-

main is denoted as ADAPT in Fig. 2. The adap-
tation strategy that uses the posterior mean of the
policy trained on the source domain as the prior
mean for adaptation is denoted as PRIOR in Fig. 2.
Finally, for comparison purposes we show the per-
formance of the policy that is trained from scratch
on the extended domain. This is denoted as TRAIN
on the graph. It can be seen that both adapta-
tion strategies significantly reduce the number of
training dialogues and, more importantly, main-
tain the level of performance during adaptation.
The adaptation strategy that places the prior on the
mean has slightly worse performance in the begin-
ning but provides the best performance after 1500
dialogues. As already noted, this could be due
to overly confident variances in the ADAPT case
leading to a local optimum.

6 Human experiments

In order to adapt and evaluate policies with hu-
mans, we used crowd-sourcing via the Ama-
zon Mechanical Turk service in a set-up similar
to (Jurčı́ček et al., 2011a; Gašić et al., 2013).
The BUDS dialogue manager was incorporated
in a live telephone-based spoken dialogue system.
The Mechanical Turk users were assigned spe-
cific tasks in the extended TopTable domain. They
were asked to find restaurants that have particu-
lar features as defined by the given task. To elicit
more complex dialogues, the users were some-
times asked to find more than one restaurant, and
in cases where such a restaurant did not exist they
were required to seek an alternative, for example
find a Chinese restaurant instead of a Vietnamese
one. After each dialogue the users filled in a feed-
back form indicating whether they judged the di-
alogue to be successful or not. Based on that bi-
nary rating, the subjective success was calculated
as well as the average reward. An objective rat-
ing can also be obtained by comparing the system
outputs with the predefined task.

During policy adaptation, at the end of each
call, users were asked to press 1 if they were satis-
fied (i.e. believed that they had been successful in
fulfilling the assigned task) and 0 otherwise. The
objective success was also calculated. The dia-
logue was then only used for adaptation if the user
rating agreed with the objective measure of suc-
cess as in (Gašić et al., 2013). The performance
based on user ratings during adaptation for both
adaptation strategies is given in Table 1.

Table 1: Policy performance during adaptation

#Diags Reward Success (%)
ADAPT 251 11.7± 0.5 92.0± 1.7
PRIOR 329 12.1± 0.4 96.7± 1.0

We then evaluated four policies with real users:
the policy trained on the basic domain, the pol-
icy trained on the extended domain and the pol-
icy adapted to the extended domain using the prior
and the policy adapted to the extended domain via
interaction with real users using retraining. The
results are given in Table 2.

Table 2: Human evaluation of four systems in the
extended domain: trained in the basic domain,
trained in the extended domain, trained in the ba-
sic and adapted in the extended domain using both
ADAPT and PRIOR methods.

Training #Diags Reward Success(%)
Basic 246 11.0± 0.5 91.9± 1.7
Extended 250 12.1± 0.4 94.4± 1.5
ADAPT 268 12.6± 0.4 94.4± 1.4
PRIOR 252 12.4± 0.4 95.6± 1.3

The results show two important features of
these adaptation strategies. The first is that it is
possible to adapt the policy from one domain to
another with a small number of dialogues. Both
adaptation techniques achieve results statistically
indistinguishable from the matched case where the
policy was trained directly in the extended do-
main. The second important feature is that both
adaptation strategies guarantee a minimum level
of performance during training, which is better
than the performance of the basic policy tested on
the extended domain. This is particularly impor-
tant when training with real users so that they are
not exposed to poor performance at any time dur-
ing training.

7 Application to fast learning

The above results show that transfer learning
through policy adaptation can be relatively fast.
Since complex domains can be decomposed into a
series of domains with gradually increasing com-
plexity, an alternative to training a system to con-
vergence starting from an uninformative prior is

to train a system in stages iteratively adapting to
successively more complex domains (Taylor and
Stone, 2009).

We explored this idea by training the extended
system in three stages. The first has only one slot
that the user can specify: food-type and additional
slots phone, address and postcode that can be re-
quested (initial in Fig. 3). The second has an ad-
ditional area slot (intermediate in Fig. 3) and the
final domain has a the price-range slot added (final
on the graph).

A policy for each of these domains was trained
until convergence and the average rewards of these
policies are the horizontal lines on Fig. 3. In addi-
tion, the following adaptation schedule was imple-
mented. An initial policy was trained from scratch
for the one-slot initial system using only 1500 dia-
logues. The resulting policy was then retrained for
the intermediate two-slot system using again just
1500 dialogues. Finally, the required three-slot
system was trained using 1500 dialogues. At each
stage the policy was tested every 100 training dia-
logues, and the resulting performances are shown
by the three graphs initial-train, intermediate-adapt
and final-adapt in Fig. 3. The policies were tested
on the domains they are trained on or adapted to.

It can be seen that after just 500 dialogues of
the third stage (i.e. after just 3500 dialogues in to-
tal) the policy reaches optimal performance. It has
been shown previously that Gaussian process re-
inforcement learning for this task normally takes
104 dialogues (Gašić et al., 2012) so this schedule
halves the number of dialogues needed for train-
ing. Also it is important to note that when training
from scratch the average reward is less than 5 for
300 dialogues (see TRAIN in Fig. 2), in this case
that only happens for about 100 dialogues (see
initial-train in Fig. 3).

8 Conclusions

This paper has investigated the problem of ex-
tending a dialogue system to handle new previ-
ously unseen concepts (i.e. slots) using adapta-
tion based transfer learning. It has been shown that
a GP kernel can be mapped to establish a relation-
ship between a basic and an extended domain and
that GP-based adaptation can restore a system to
optimal performance within 200 to 300 adaptation
dialogues. A major advantage of this technique is
that it allows a minimum level of performance to
be guaranteed and hence guards against subject-

0 200 400 600 800 1000 1200 1400 1600
Training dialogues

15

10

5

0

5

10

15

Re
w

ar
d

initial-train
intermediate-adapt
final-adapt
intermediate
initial
final

Figure 3: Application of transfer learning to fast
training. The target is to achieve the performance
of the fully trained 3 slot system as shown by the
lower horizontal line final. This is achieved in three
stages, with the target being achieved part way
through the 3rd stage using just 3500 dialogues in
total.

ing the user to poor performance during the early
stages of adaptation.

Two methods of adaptation have been studied –
one based on augmenting the training points from
the source domain with new points from the tar-
get domain, and a second which treats the source
policy as a prior for the target policy. Results us-
ing the prior method were consistently better. In a
further experiment, it was also shown that starting
with a simple system and successively extending
and adapting it slot by slot, can achieve optimal
performance faster than one trained directly from
scratch.

These results suggest that it should be feasi-
ble to construct dialogue systems which can dy-
namically update and extend their domains of dis-
course automatically during direct conversations
with users. However, further investigation of
methods for learning the relationship between the
new and the old domains is needed. Also, the
scalability of these results to large-scale domain
expansion remains a topic for future work.

Acknowledgments

This work was partly supported by PAR-
LANCE (www.parlance-project.eu), an EU Sev-
enth Framework Programme project (grant num-
ber 287615).

References
Y Engel, S Mannor, and R Meir. 2005. Reinforcement

learning with Gaussian processes. In Proceedings of
ICML.

Y Engel. 2005. Algorithms and Representations for
Reinforcement Learning. PhD thesis, Hebrew Uni-
versity.

M Gales and S Young. 2007. The application of hid-
den Markov models in speech recognition. Found.
Trends Signal Process., 1:195–304.

M Gašić, F Jurčı́ček, S Keizer, F Mairesse, J Schatz-
mann, B Thomson, K Yu, and S Young. 2010.
Gaussian Processes for Fast Policy Optimisation of
POMDP-based Dialogue Managers. In Proceedings
of SIGDIAL.

M Gašić, F Jurčı́ček, B Thomson, K Yu, and S Young.
2011. On-line policy optimisation of spoken dia-
logue systems via live interaction with human sub-
jects. In Proceedings of ASRU.

M Gašić, M Henderson, B Thomson, P Tsiakoulis, and
S Young. 2012. Policy optimisation of POMDP-
based dialogue systems without state space com-
pression. In Proceedings of SLT.

M Gašić, C. Breslin, M. Henderson, Szummer M.,
B Thomson, P. Tsiakoulis, and S Young. 2013.
On-line policy optimisation of Bayesian Dialogue
Systems by human interaction. In Proceedings of
ICASSP.

M Geist and O Pietquin. 2011. Managing Uncertainty
within the KTD Framework. In Proceedings of the
Workshop on Active Learning and Experimental De-
sign, Sardinia (Italy).

K Georgila and O Lemon. 2004. Adaptive multimodal
dialogue management based on the information state
update approach. In W3C Workshop on Multimodal
Interaction.

S Janarthanam and O Lemon. 2010. Adaptive Re-
ferring Expression Generation in Spoken Dialogue
Systems: Evaluation with Real Users. In Proceed-
ings of SIGDIAL.

T Jebara, R Kondor, and A Howard. 2004. Probability
product kernels. J. Mach. Learn. Res., 5:819–844,
December.

F Jurčı́ček, S Keizer, M Gašić, F Mairesse, B Thomson,
K Yu, and S Young. 2011a. Real user evaluation of
spoken dialogue systems using Amazon Mechanical
Turk. In Proceedings of Interspeech.

F Jurčı́ček, B Thomson, and S Young. 2011b. Natural
actor and belief critic: Reinforcement algorithm for
learning parameters of dialogue systems modelled as
POMDPs. ACM Transactions on Speech and Lan-
guage Processing.

S Keizer, M Gašić, F Jurčı́ček, F Mairesse, B Thomson,
K Yu, and S Young. 2010. Parameter estimation
for agenda-based user simulation. In Proceedings of
SIGDIAL.

DJ Litman and S Pan. 1999. Empirically evaluating
an adaptable spoken dialogue system. In Proceed-
ings of the seventh international conference on User
modelling.

DJ Litman and S Pan. 2002. Designing and evaluat-
ing an adaptive spoken dialogue system. User Mod-
elling and User-Adapted Interaction, 12:111–137.

CE Rasmussen and CKI Williams. 2005. Gaussian
Processes for Machine Learning. MIT Press, Cam-
bridge, Massachusetts.

N Roy, J Pineau, and S Thrun. 2000. Spoken dialogue
management using probabilistic reasoning. In Pro-
ceedings of ACL.

J Schatzmann. 2008. Statistical User and Error Mod-
elling for Spoken Dialogue Systems. Ph.D. thesis,
University of Cambridge.

ME Taylor and P Stone. 2009. Transfer learning for
reinforcement learning domains: A survey. J. Mach.
Learn. Res., 10:1633–1685, December.

ME Taylor, P Stone, and Y Liu. 2007. Transfer learn-
ing via inter-task mappings for temporal difference
learning. J. Mach. Learn. Res., 8:2125–2167, De-
cember.

B Thomson and S Young. 2010. Bayesian update of
dialogue state: A POMDP framework for spoken di-
alogue systems. Computer Speech and Language,
24(4):562–588.

B Thomson, M Gašić, M Henderson, P Tsiakoulis, and
S Young. 2012. N-Best error simulation for training
spoken dialogue systems. In Proceedings of SLT.

TopTable. 2012. TopTable. https://www.
toptable.com.

JD Williams and SJ Young. 2007. Partially Observable
Markov Decision Processes for Spoken Dialog Sys-
tems. Computer Speech and Language, 21(2):393–
422.

S Young, M Gašić, S Keizer, F Mairesse, J Schatz-
mann, B Thomson, and K Yu. 2010. The Hid-
den Information State model: A practical frame-
work for POMDP-based spoken dialogue manage-
ment. Computer Speech and Language, 24(2):150–
174.

B Zhang, Q Cai, J Mao, E Chang, and B Guo.
2001. Spoken Dialogue Management as Planning
and Acting under Uncertainty. In Proceedings of
Eurospeech.

