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¾ The idea behind RNNs is to make use 
of sequential information

¾ Computation takes into account 
historical information using the 
recurrence

¾ Weights are shared across time.

¾ Different architectures

Recurrent Neural Network (RNN)

Recurrent neural network diagram
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¾ Loss Function

¾ Backpropagation

Recurrent Neural Network

Unfolded recurrent neural network diagram

Unfolded recurrent neural network diagramUnfolded recurrent neural network diagram
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¾ The gradient value becomes small 
during backpropagation so does not 
affect the values at the beginning of 
the network.

¾ Many local influences. A value is 
mainly influenced by inputs that are 
somewhere close.

¾ Lack of long term dependencies

Vanishing gradient problem

Unenrolled recurrent neural network diagram

Unfolded recurrent neural network diagram

The cat, which ate a lot of food …., was full.
The cats, which ate a lot of food …., were full.
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Architecture

[Vaswani, et al. Attention is all you need, 2017]
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Architecture

The full model architecture of the transformer. (Image source: Fig 1 & 2 in “Attention is all you need” Vaswani, et al., 2017)

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
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¾ Sequence to Sequence Operation
¾ input vectors 𝐱1,𝐱2,…𝐱t

¾ output vectors 𝐲1,𝐲2,…,𝐲t

Self-Attention
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¾ We have the following sequence as input: 
¾ ” the, cat, walks, on, the, street ”

¾ Assign each word t in our sequence its corresponding embedding
¾ Vthe , Vcat ,Vwalks, Von ,Vthe ,Vstreet

¾ Feed this sequence into a self-attention layer and the output looks as follow:
¾ Ythe , Ycat ,Ywalks, Yon ,Ythe ,Ystreet

Where Ycat is a weighted sum over all embeddings vectors in the first sequence, weighted by their 
dot-product with Vcat

Self-Attention in action



hhu.de

Transformer

Marco Moresi14

¾ Every input vector 𝐱i is used in three different ways in the self attention operation:
¾ Query: It is compared to every other vector to establish the weights for its own output 𝐲i

¾ Key: It is compared to every other vector to establish the weights for the output of the j-th vector 
𝐲j

¾ Value: It is used as part of the weighted sum to compute each output vector once the weights 
have been established.

Queries, Keys and Values
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¾ In order to calculate the query, keys 
and values vectors we incorporate 
Wq Wk Wv matrices

Queries, Keys and Values

Self-attention with query, key and values transformations
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¾ Given the sequence:
¾ “Juan gave roses to Susan”

¾ Words like ”gave” has different relations to different parts of the sentence.
¾ In a single Self-Attention operation all the information just gets summed together.

¾ If “Susan gave roses to Juan” instead, the output vector Ygave would be the same even though the meaning has 
changed.

¾ We can give the self attention greater power of discrimination, by combining several self attention 
mechanisms

Multi-Head Attention
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¾ Multi-head attention allows the model to jointly attend 
to information from different representation 
subspaces at different position

¾ Each head i has its own matrices Wi
v, Wi

k, Wq
i to do 

the projections into different subspaces
¾ Scaled Dot-Product Attention are calculated in 

parallel
¾ All the outputs are concatenated.
¾ Finally the concatenated output is projected with a 

weight matrix WO that was trained jointly with the 
model.

Multi-Head Attention

Multi-Head Attention
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Multi-Head Attention (recap)

https://jalammar.github.io/illustrated-transformer/
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¾ As attention system does not take into 
account the order of the sequence as RNN 
does, is necessary to add extra information.

¾ Positional Encoding

Positional Encoding

The cat walks
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¾ Each sub-layer in each encoder has a 
residual connection around it, and is 
followed by a layer-normalization step.

¾ Normalization and residual connections are 
standard tricks used to help deep neural 
networks train faster and more accurately. 

¾ The layer normalization is applied over the 
embedding dimension only.

The residuals

Transformer decoder block
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¾ The self-attention layer is only allowed to 
attend to earlier positions in the output 
sequence. This is done by masking future 
positions (setting them to -inf) before the 
softmax step in the self-attention 
calculation.

¾ The Linear layer is a simple fully connected 
neural network that projects the vector 
produced by the stack of decoders, into a 
much, much larger vector called a logits 
vector.

¾ The softmax layer then turns scores of 
logits vector into probabilities.

Decoder side

BERT decoder
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¾ Architecture Details: 
¾ Transformer base model

¾ Stack of 6 encoder-decoder
¾ 8 Attention heads 
¾ 512 hidden dimensions

¾ Transformer big
¾ Stack of 6 encoder-decoder
¾ 16 Attention heads
¾ 1024 hidden dimensions

Results

BLEU scores on the English-to-German and English-to-French newstest 2014
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¾ Designed to pretrain bidirectional 
representation from unlabeled text

¾ BERT-base: 12 Transformer encoder 
blocks, hidden dimension 768 and 12 
attention heads.

¾ Fixed input size (512 tokens)
¾ Word embedding + Positional encoding 

+Sentence embedding
¾ Special tokens ([CLS], [SEP], sentence 

A/B embedding)
¾ Pre-training tasks:

¾ Masked LM
¾ Next Sentence Prediction

BERT (Bidirectional Encoder Representation from Transformers)

The   cat   walks

[Devlin, et al.. Bert: Pre-training of deep bidirectional transformers for language understanding, 2018.]
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Masked Language Model:

§ Mask some percentage of the input tokens at 
random, and then predict those masked tokens.

§ Last hidden vector corresponding to the masked 
tokens are fed into an output softmax layer over the 

vocabulary

[Devlin, et al.. Bert: Pre-training of deep bidirectional transformers for language understanding, 2018.]
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+Sentence embedding
¾ Special tokens ([CLS], [SEP], sentence 

A/B embedding)
¾ Pre-training tasks:

¾ Masked LM
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BERT (Bidirectional Encoder Representation from Transformers)

The   cat   walks

Next Sentence Prediction:

§ Given a pair of two sentences (A, B)

§ Learns to predict if the second sentence in the pair 
is the subsequent sentence in the original 

document

[Devlin, et al.. Bert: Pre-training of deep bidirectional transformers for language understanding, 2018.]
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Masked Language Model
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Next Sentence Prediction
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Fine Tuning
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Benchmarks

GLUE Test results 

SQuAD 1.1 results SQuAD 2.0 results 
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XLNet (Generalized Autoregressive Pretraining for Language Understanding )

XLNet - Permutation Language Modeling

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence 
mechanism and relative encoding.

¾ Mitigate the problem of Masked 
Language Model

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]
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XLNet (Generalized Autoregressive Pretraining for Language Understanding )

XLNet - Permutation Language Modeling

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence 
mechanism and relative encoding.

¾ Mitigate the problem of Masked 
Language Model

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]

"cats", "than", "I", "more", "dogs", 
"like"
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XLNet (Generalized Autoregressive Pretraining for Language Understanding )

XLNet - Permutation Language Modeling

¾ Permutation Language Modeling

¾ Does not rely on data corruption
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[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]
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¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence 
mechanism and relative encoding.

¾ Mitigate the problem of Masked 
Language Model

XLNet (Generalized Autoregressive Pretraining for Language Understanding )

XLNet - Permutation Language Modeling

Example:
New York is a city 

Target: Predict tokens New and York

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]
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Benchmarks

GLUE Test results 

SQuAD 2.0 results SQuAD 1.1 results 
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¾ Mitigate the problem of Masked 
Language Model

¾ Replaced token detection as pre-
training task 

¾ More efficient pre training task

¾ Bi-directional representation

¾ Less computation consumption

ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately)

An overview of replaced token detection. After pre-training, we throw out the generator
and only fine-tune the discriminator (the ELECTRA model) on downstream tasks. 

[Clark, et al. Electra: Pre-training text encoders as discriminators rather than generators, 2020]
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Benchmarks

SQuAD 1.1 results SQuAD 2.0 results 

GLUE Test results 
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Benchmarks

Replaced token detection pre-training consistently outperforms masked language model pre-training 
given the same compute budget. The left figure is a zoomed-in view of the dashed box. 
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Applications in Dialogue Systems

¾ Dialog State Tracking
¾ TripPy: A Triple Copy Strategy for Value Independent 

Neural Dialog State Tracking (Heck et al., 2020)
¾ BERT-DST: Scalable End-to-End Dialogue State 

Tracking with Bidirectional Encoder Representations 
from Transformer (Chao et al., 2019)

¾ Natural Language Generation
¾ Few-shot Natural Language Generation for Task-

Oriented Dialog (Peng et al., 2020)
¾ Semantically Conditioned Dialog Response 

Generation via Hierarchical Disentangled Self-
Attention (Chen et al., 2019)

¾ Evaluation 
¾ BERTScore: Evaluating Text Generation with BERT 

(Zhang et al., 2019)
¾ USR: An Unsupervised and Reference Free 

Evaluation Metric for Dialog Generation (Mehri et al., 
2020)

¾ Sentiments in Dialog
¾ Hierarchical Transformer Network for Utterance-level 

Emotion Recognition (Li et al., 2020)

¾ … and more.
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¾ Pros
¾ Tackle scarcity data problem
¾ Bi-directional representation
¾ Easy to fine-tune for a specific task

¾ Cons
¾ Hard to start from the scratch
¾ Catastrophic forgetting 
¾ More expensive to train than RNN
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