
hhu.de

Transformers
Marco Moresi
Dialog Systems and Machine Learning Group

22.05.2020

hhu.de

Content

Marco Moresi2

¾ Recurrent Neural Network (RNN)
¾ What is a RNN?
¾ Long term dependencies

¾ Transformers
¾ Self Attention Mechanism
¾ Multi Head Attention

¾ Transformer-based models
¾ BERT
¾ XLNet
¾ Electra

¾ Applications in dialogue systems
¾ Conclusion

hhu.de

Recurrent Neural Network

Marco Moresi3

¾ The idea behind RNNs is to make use
of sequential information

¾ Computation takes into account
historical information using the
recurrence

¾ Weights are shared across time.

¾ Different architectures

Recurrent Neural Network (RNN)

Recurrent neural network diagram

hhu.de

Recurrent Neural Network

Marco Moresi4

¾ The idea behind RNNs is to make use
of sequential information

¾ Computation takes into account
historical information using the
recurrence

¾ Weights are shared across time.

¾ Different architectures

Recurrent Neural Network (RNN)

Unfolded recurrent neural network diagram

hhu.de

Recurrent Neural Network

Marco Moresi5

¾ The idea behind RNNs is to make use
of sequential information

¾ Computation takes into account
historical information using the
recurrence

¾ Weights are shared across time.

¾ Different architectures

Recurrent Neural Network (RNN)

hhu.de

Recurrent Neural Network

Marco Moresi6

¾ Loss Function

¾ Backpropagation

Recurrent Neural Network

Unfolded recurrent neural network diagram

Unfolded recurrent neural network diagramUnfolded recurrent neural network diagram

hhu.de

Recurrent Neural Network

Marco Moresi7

¾ The gradient value becomes small
during backpropagation so does not
affect the values at the beginning of
the network.

¾ Many local influences. A value is
mainly influenced by inputs that are
somewhere close.

¾ Lack of long term dependencies

Vanishing gradient problem

Unenrolled recurrent neural network diagram

Unfolded recurrent neural network diagram

The cat, which ate a lot of food …., was full.
The cats, which ate a lot of food …., were full.

hhu.de

Transformers

Marco Moresi8

Architecture

[Vaswani, et al. Attention is all you need, 2017]

hhu.de

Transformers

Marco Moresi9

Architecture

[Vaswani, et al. Attention is all you need, 2017]

hhu.de

Transformers

Marco Moresi10

Architecture

[Vaswani, et al. Attention is all you need, 2017]

hhu.de

Transformer

Marco Moresi11

Architecture

The full model architecture of the transformer. (Image source: Fig 1 & 2 in “Attention is all you need” Vaswani, et al., 2017)

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

hhu.de

Transformer

Marco Moresi12

¾ Sequence to Sequence Operation
¾ input vectors 𝐱1,𝐱2,…𝐱t

¾ output vectors 𝐲1,𝐲2,…,𝐲t

Self-Attention

hhu.de

Transformer

Marco Moresi13

¾ We have the following sequence as input:
¾ ” the, cat, walks, on, the, street ”

¾ Assign each word t in our sequence its corresponding embedding
¾ Vthe , Vcat ,Vwalks, Von ,Vthe ,Vstreet

¾ Feed this sequence into a self-attention layer and the output looks as follow:
¾ Ythe , Ycat ,Ywalks, Yon ,Ythe ,Ystreet

Where Ycat is a weighted sum over all embeddings vectors in the first sequence, weighted by their
dot-product with Vcat

Self-Attention in action

hhu.de

Transformer

Marco Moresi14

¾ Every input vector 𝐱i is used in three different ways in the self attention operation:
¾ Query: It is compared to every other vector to establish the weights for its own output 𝐲i

¾ Key: It is compared to every other vector to establish the weights for the output of the j-th vector
𝐲j

¾ Value: It is used as part of the weighted sum to compute each output vector once the weights
have been established.

Queries, Keys and Values

hhu.de

Transformer

Moresi Marco15

¾ In order to calculate the query, keys
and values vectors we incorporate
Wq Wk Wv matrices

Queries, Keys and Values

Self-attention with query, key and values transformations

hhu.de

Transformer

Marco Moresi16

¾ Given the sequence:
¾ “Juan gave roses to Susan”

¾ Words like ”gave” has different relations to different parts of the sentence.
¾ In a single Self-Attention operation all the information just gets summed together.

¾ If “Susan gave roses to Juan” instead, the output vector Ygave would be the same even though the meaning has
changed.

¾ We can give the self attention greater power of discrimination, by combining several self attention
mechanisms

Multi-Head Attention

hhu.de

Transformer

Marco Moresi17

¾ Multi-head attention allows the model to jointly attend
to information from different representation
subspaces at different position

¾ Each head i has its own matrices Wi
v, Wi

k, Wq
i to do

the projections into different subspaces
¾ Scaled Dot-Product Attention are calculated in

parallel
¾ All the outputs are concatenated.
¾ Finally the concatenated output is projected with a

weight matrix WO that was trained jointly with the
model.

Multi-Head Attention

Multi-Head Attention

hhu.de

Transformer

Marco Moresi18

Multi-Head Attention (recap)

https://jalammar.github.io/illustrated-transformer/

hhu.de

Transformer

Marco Moresi19

¾ As attention system does not take into
account the order of the sequence as RNN
does, is necessary to add extra information.

¾ Positional Encoding

Positional Encoding

The cat walks

hhu.de

Transformer

Marco Moresi20

¾ Each sub-layer in each encoder has a
residual connection around it, and is
followed by a layer-normalization step.

¾ Normalization and residual connections are
standard tricks used to help deep neural
networks train faster and more accurately.

¾ The layer normalization is applied over the
embedding dimension only.

The residuals

Transformer decoder block

hhu.de

Transformer

Marco Moresi21

¾ The self-attention layer is only allowed to
attend to earlier positions in the output
sequence. This is done by masking future
positions (setting them to -inf) before the
softmax step in the self-attention
calculation.

¾ The Linear layer is a simple fully connected
neural network that projects the vector
produced by the stack of decoders, into a
much, much larger vector called a logits
vector.

¾ The softmax layer then turns scores of
logits vector into probabilities.

Decoder side

BERT decoder

hhu.de

Transformer

Marco Moresi22

¾ Architecture Details:
¾ Transformer base model

¾ Stack of 6 encoder-decoder
¾ 8 Attention heads
¾ 512 hidden dimensions

¾ Transformer big
¾ Stack of 6 encoder-decoder
¾ 16 Attention heads
¾ 1024 hidden dimensions

Results

BLEU scores on the English-to-German and English-to-French newstest 2014

hhu.de

Transformer

Marco Moresi23

¾ Designed to pretrain bidirectional
representation from unlabeled text

¾ BERT-base: 12 Transformer encoder
blocks, hidden dimension 768 and 12
attention heads.

¾ Fixed input size (512 tokens)
¾ Word embedding + Positional encoding

+Sentence embedding
¾ Special tokens ([CLS], [SEP], sentence

A/B embedding)
¾ Pre-training tasks:

¾ Masked LM
¾ Next Sentence Prediction

BERT (Bidirectional Encoder Representation from Transformers)

The cat walks

[Devlin, et al.. Bert: Pre-training of deep bidirectional transformers for language understanding, 2018.]

hhu.de

Transformer

Marco Moresi24

¾ Designed to pretrain bidirectional
representation from unlabeled text

¾ BERT-base: 12 Transformer encoder
blocks, hidden dimension 768 and 12
attention heads.

¾ Fixed input size (512 tokens)
¾ Word embedding + Positional encoding

+Sentence embedding
¾ Special tokens ([CLS], [SEP], sentence

A/B embedding)
¾ Pre-training tasks:

¾ Masked LM
¾ Next Sentence Prediction

BERT (Bidirectional Encoder Representation from Transformers)

The cat walks

Masked Language Model:

§ Mask some percentage of the input tokens at
random, and then predict those masked tokens.

§ Last hidden vector corresponding to the masked
tokens are fed into an output softmax layer over the

vocabulary

[Devlin, et al.. Bert: Pre-training of deep bidirectional transformers for language understanding, 2018.]

hhu.de

Transformer

Marco Moresi25

¾ Designed to pretrain bidirectional
representation from unlabeled text

¾ BERT-base: 12 Transformer encoder
blocks, hidden dimension 768 and 12
attention heads.

¾ Fixed input size (512 tokens)
¾ Word embedding + Positional encoding

+Sentence embedding
¾ Special tokens ([CLS], [SEP], sentence

A/B embedding)
¾ Pre-training tasks:

¾ Masked LM
¾ Next Sentence Prediction

BERT (Bidirectional Encoder Representation from Transformers)

The cat walks

Next Sentence Prediction:

§ Given a pair of two sentences (A, B)

§ Learns to predict if the second sentence in the pair
is the subsequent sentence in the original

document

[Devlin, et al.. Bert: Pre-training of deep bidirectional transformers for language understanding, 2018.]

hhu.de

Transformer

Marco Moresi26

Masked Language Model

hhu.de

Transformer

Marco Moresi27

Next Sentence Prediction

hhu.de

Transformer

Marco Moresi28

Fine Tuning

hhu.de

Transformer

Marco Moresi29

Benchmarks

GLUE Test results

SQuAD 1.1 results SQuAD 2.0 results

hhu.de

Transformer

Marco Moresi30

XLNet (Generalized Autoregressive Pretraining for Language Understanding)

XLNet - Permutation Language Modeling

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence
mechanism and relative encoding.

¾ Mitigate the problem of Masked
Language Model

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]

hhu.de

Transformer

Marco Moresi31

XLNet (Generalized Autoregressive Pretraining for Language Understanding)

XLNet - Permutation Language Modeling

Language Model:

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence
mechanism and relative encoding.

¾ Mitigate the problem of Masked
Language Model

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]

hhu.de

Transformer

Marco Moresi32

XLNet (Generalized Autoregressive Pretraining for Language Understanding)

XLNet - Permutation Language Modeling

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence
mechanism and relative encoding.

¾ Mitigate the problem of Masked
Language Model

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]

hhu.de

Transformer

Marco Moresi33

XLNet (Generalized Autoregressive Pretraining for Language Understanding)

XLNet - Permutation Language Modeling

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence
mechanism and relative encoding.

¾ Mitigate the problem of Masked
Language Model

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]

hhu.de

Transformer

Marco Moresi34

XLNet (Generalized Autoregressive Pretraining for Language Understanding)

XLNet - Permutation Language Modeling

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence
mechanism and relative encoding.

¾ Mitigate the problem of Masked
Language Model

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]

hhu.de

Transformer

Marco Moresi35

XLNet (Generalized Autoregressive Pretraining for Language Understanding)

XLNet - Permutation Language Modeling

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence
mechanism and relative encoding.

¾ Mitigate the problem of Masked
Language Model

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]

hhu.de

Transformer

Marco Moresi36

XLNet (Generalized Autoregressive Pretraining for Language Understanding)

XLNet - Permutation Language Modeling

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence
mechanism and relative encoding.

¾ Mitigate the problem of Masked
Language Model

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]

"cats", "than", "I", "more", "dogs",
"like"

hhu.de

Transformer

Marco Moresi37

XLNet (Generalized Autoregressive Pretraining for Language Understanding)

XLNet - Permutation Language Modeling

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence
mechanism and relative encoding.

¾ Mitigate the problem of Masked
Language Model

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]

hhu.de

Transformer

Marco Moresi38

¾ Permutation Language Modeling

¾ Does not rely on data corruption

¾ Integrates the segment recurrence
mechanism and relative encoding.

¾ Mitigate the problem of Masked
Language Model

XLNet (Generalized Autoregressive Pretraining for Language Understanding)

XLNet - Permutation Language Modeling

Example:
New York is a city

Target: Predict tokens New and York

[Yang, et al. Xlnet: Generalized autoregressive pretraining for languageunderstanding, 2019]

hhu.de

Transformer

Marco Moresi39

Benchmarks

GLUE Test results

SQuAD 2.0 results SQuAD 1.1 results

hhu.de

Transformer

Marco Moresi40

¾ Mitigate the problem of Masked
Language Model

¾ Replaced token detection as pre-
training task

¾ More efficient pre training task

¾ Bi-directional representation

¾ Less computation consumption

ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately)

An overview of replaced token detection. After pre-training, we throw out the generator
and only fine-tune the discriminator (the ELECTRA model) on downstream tasks.

[Clark, et al. Electra: Pre-training text encoders as discriminators rather than generators, 2020]

hhu.de

Transformer

Marco Moresi41

Benchmarks

SQuAD 1.1 results SQuAD 2.0 results

GLUE Test results

hhu.de

Transformer

Marco Moresi42

Benchmarks

Replaced token detection pre-training consistently outperforms masked language model pre-training
given the same compute budget. The left figure is a zoomed-in view of the dashed box.

hhu.de

Transformer

Marco Moresi43

Applications in Dialogue Systems

¾ Dialog State Tracking
¾ TripPy: A Triple Copy Strategy for Value Independent

Neural Dialog State Tracking (Heck et al., 2020)
¾ BERT-DST: Scalable End-to-End Dialogue State

Tracking with Bidirectional Encoder Representations
from Transformer (Chao et al., 2019)

¾ Natural Language Generation
¾ Few-shot Natural Language Generation for Task-

Oriented Dialog (Peng et al., 2020)
¾ Semantically Conditioned Dialog Response

Generation via Hierarchical Disentangled Self-
Attention (Chen et al., 2019)

¾ Evaluation
¾ BERTScore: Evaluating Text Generation with BERT

(Zhang et al., 2019)
¾ USR: An Unsupervised and Reference Free

Evaluation Metric for Dialog Generation (Mehri et al.,
2020)

¾ Sentiments in Dialog
¾ Hierarchical Transformer Network for Utterance-level

Emotion Recognition (Li et al., 2020)

¾ … and more.

hhu.de

Conclusion

Marco Moresi44

¾ Pros
¾ Tackle scarcity data problem
¾ Bi-directional representation
¾ Easy to fine-tune for a specific task

¾ Cons
¾ Hard to start from the scratch
¾ Catastrophic forgetting
¾ More expensive to train than RNN

hhu.de

Thanks!

Marco Moresi45

hhu.de

References

Marco Moresi46

¾ TripPy: A Triple Copy Strategy for Value Independent Neural Dialog State Tracking (Heck et al., 2020)
¾ BERT-DST: Scalable End-to-End Dialogue State Tracking with Bidirectional Encoder Representations from

Transformer (Chao et al., 2019)
¾ Few-shot Natural Language Generation for Task-Oriented Dialog (Peng et al., 2020)
¾ Semantically Conditioned Dialog Response Generation via Hierarchical Disentangled Self-Attention (Chen et al., 2019)
¾ BERTScore: Evaluating Text Generation with BERT (Zhang et al., 2019)
¾ USR: An Unsupervised and Reference Free Evaluation Metric for Dialog Generation (Mehri et al., 2020)
¾ Hierarchical Transformer Network for Utterance-level Emotion Recognition (Li et al., 2020)
¾ Xlnet: Generalized autoregressive pretraining for language understanding (Yang et al., 2019)
¾ Attention is all you need, (Vaswani et al., 2017)
¾ Bert: Pre-training of deep bidirectional transformers for language understanding. (Devlin et al., 2018)
¾ Glue: A multi-task benchmark and analysis platform for natural language understanding. (Wang et al, 2018)

