
Project Hermes

Fabian Ruhland, Filip Krakowski, Michael Schöttner

Department of Computer Science
Heinrich-Heine-University Düsseldorf

18.04.2023



Motivation



Motivation

Java NIO provides a modern and easy-to-use API for blocking and non-blocking
communication → Many projects are built using NIO

Networking Frameworks Distributed Databases Computing Frameworks

Netty Apache Cassandra Apache Spark

Drawback: NIO relies on classic Java Sockets → Ethernet
On many HPC and cloud systems, you are stuck with Gigabit Ethernet and not

able to benefit from high speed transports (e.g. InfiniBand)

Motivation 1/19



Motivation

Java NIO provides a modern and easy-to-use API for blocking and non-blocking
communication → Many projects are built using NIO

Networking Frameworks Distributed Databases Computing Frameworks

Netty Apache Cassandra Apache Spark

Drawback: NIO relies on classic Java Sockets → Ethernet
On many HPC and cloud systems, you are stuck with Gigabit Ethernet and not

able to benefit from high speed transports (e.g. InfiniBand)

Motivation 1/19



Motivation

Solution: Build our own NIO implementation (including SelectorProvider,
Selector, SelectionKey, SocketChannel and ServerSocketChannel) -> Use a

high speed transport, such as InfiniBand

Unified Communication X (UCX) provides a single API for many transports (e.g.
InfiniBand, Shared Memory, NVLink, ...)

=⇒ Use UCX as communication backend for our NIO implementation
(Project title: hadroNIO)

Motivation 2/19



Motivation

Solution: Build our own NIO implementation (including SelectorProvider,
Selector, SelectionKey, SocketChannel and ServerSocketChannel) -> Use a

high speed transport, such as InfiniBand

Unified Communication X (UCX) provides a single API for many transports (e.g.
InfiniBand, Shared Memory, NVLink, ...)

=⇒ Use UCX as communication backend for our NIO implementation
(Project title: hadroNIO)

Motivation 2/19



Related Work



Related Work

Alternative solutions accelerate traditional sockets → NIO relies on sockets and
can also be accelerated by these solutions

IP over InfiniBand (IBoIP)

• Kernel driver, exposing InfiniBand devices as standard network interfaces
• Transparently usable by applications
• Uses the kernel’s network stack (Context switching, CPU resources)

libvma

• Open source library, developed by Mellanox
• Preloaded to socket-based applications (LD_PRELOAD)
• Full kernel bypass using native ibverbs
• Requires elevated privileges (CAP_NET_RAW or root)

Related Work 3/19



Related Work

Alternative solutions accelerate traditional sockets → NIO relies on sockets and
can also be accelerated by these solutions

IP over InfiniBand (IBoIP)

• Kernel driver, exposing InfiniBand devices as standard network interfaces
• Transparently usable by applications
• Uses the kernel’s network stack (Context switching, CPU resources)

libvma

• Open source library, developed by Mellanox
• Preloaded to socket-based applications (LD_PRELOAD)
• Full kernel bypass using native ibverbs
• Requires elevated privileges (CAP_NET_RAW or root)

Related Work 3/19



Related Work

Alternative solutions accelerate traditional sockets → NIO relies on sockets and
can also be accelerated by these solutions

IP over InfiniBand (IBoIP)

• Kernel driver, exposing InfiniBand devices as standard network interfaces
• Transparently usable by applications
• Uses the kernel’s network stack (Context switching, CPU resources)

libvma

• Open source library, developed by Mellanox
• Preloaded to socket-based applications (LD_PRELOAD)
• Full kernel bypass using native ibverbs
• Requires elevated privileges (CAP_NET_RAW or root)

Related Work 3/19



Related Work

Java Sockets over RDMA (JSOR)

• Developed by IBM → Only available in proprietary J9 JVM
• Full kernel bypass via RDMA
• Has shown promising results, but has problems in multi-threaded

applications and stuck connections
• Not supported anymore in IBM SDK 11 (uses OpenJ9)

Sockets Direct Protocol (SDP)

• Full kernel bypass via RDMA
• Included in OFED and introduced into the JDK with Java 7
• Support has officially ended (not included in OFED since version 3.5)

Related Work 4/19



Related Work

Java Sockets over RDMA (JSOR)

• Developed by IBM → Only available in proprietary J9 JVM
• Full kernel bypass via RDMA
• Has shown promising results, but has problems in multi-threaded

applications and stuck connections
• Not supported anymore in IBM SDK 11 (uses OpenJ9)

Sockets Direct Protocol (SDP)

• Full kernel bypass via RDMA
• Included in OFED and introduced into the JDK with Java 7
• Support has officially ended (not included in OFED since version 3.5)

Related Work 4/19



Related Work

netty

Default NIO

Sockets

libvmaKernel

IP over
InfiniBand

Network Interface Card

TCP/IP Stack

hadroNIO

JUCX/
Infinileap

UCX

Java space

Native space

Application

• Many (successful) attempts in the
past, but only IPoIB and libvma are
still actively supported

• libvma is the only socket-based
solution offering kernel bypass but
requires elevated rights and can
be complex to configure

• hadroNIO offers kernel bypass via
UCX and works completely in user
space (no special privileges
needed)

Related Work 5/19



Implementation



Architecture

SocketChannel Selector

hadroNIO

ServerSocketChannel

JUCX/Infinileap

Endpoint WorkerCallback

pr
og

re
sscreate

co
nn

ec
t send/

receiveno
tif
y

Java Application

Ethernet Infiniband Shared Memory...
Hardware

Java space

Native space UCX

• UCX is written in C/C++, but
provides JUCX, a Java binding via
JNI

• Endpoint abstracts one
destination of a connection →
Connects to a remote Endpoint

• Worker can represent multiple
network resources with their
Progress Engine

• Worker.progress() needs to be
called for send/receive requests to
be finished (→ Callback)

Implementation 6/19



Interfacing between NIO and JUCX

Problem:

• UCX communication is asynchronous → Buffers may not be altered by the
application, while a read/write is in progress

• After a call to SocketChannel.write(ByteBuffer buffer), the buffer may be
altered by the application

Solution: Use an intermediate buffer

• SocketChannel.write(ByteBuffer buffer) copies the the data into the
intermediate buffer

• UCX read/write methods only work on the intermediate buffer

Implementation 7/19



Send

Send Buffer: 1 MiB

SocketChannel.write(ByteBuffer source)

Source Buffer: 4 KiB

1. Claim 4 KiB of space

2. Copy source buffer
into send buffer

Copied Buffer: 4 KiB

3. Invoke an async send
via UCX

4. Return to application

UCX send (async) UCX Callback
5. Callback is
invoked when

finished sending

6. Free claimed space

Implementation 8/19



Receive

Receive Buffer: 1 MiB

SocketChannel.read(ByteBuffer destination)

Destination Buffer

Slice: 32 KiB

2. Invoke async
receives via UCX

UCX receive (async) UCX Callback
3. Callback is
invoked when

finished receiving 4. Notify SocketChannel

...Slice: 32 KiB

5. Copy buffer slice
into destination buffer

1. Allocate slices
inside receive buffer

fillReceiveBuffer()

Implementation 9/19



Busy Polling vs. Epoll

• Busy polling UCX workers offers best performance with thread count <=

CPU count, but does not scale well
• Selector can use epoll() to let thread sleep while no event is incoming
• Only using epoll() causes a high increase in latency
• Solution: Use busy polling for a short time (e.g 20 µs) and fallback to
epoll() if no event happens

Selector can be configured to use 1 of 3 modes: Busy Polling, Epoll and Dynamic

Implementation 10/19



Current project state

2� Accelerating netty works
2� Accelerating gRPC works
2� Accelerating Apache Ratis works
2� Busy Polling & Epoll support
2� Works with JUCX and Infinileap

Implementation 11/19



Evaluation



Evaluation

Cluster setup (OCI)

CPU 2x Intel Xeon Gold 6154 CPU (3.00GHz, 18 Cores/36 Threads)
RAM 384 GiB
NIC Mellanox MT28800 (ConnectX-5) 100 Gbit/s Ethernet
OS Oracle Linux 8

OFED MLNX 5.4
Java OpenJDK 19.0.1
UCX 1.13.1

libvma 9.8.1

Evaluation 12/19



Latency (Netty RTT with 16-byte messages - Average values)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Connections

5

10

15

20

25

30

35

40

45

La
te

nc
y 

in
 

s
Ethernet
hadroNIO (Infinileap)

hadroNIO (JUCX) libvma • Ethernet cannot reach
below 25 µs

• hadroNIO (Infinileap)
0.5 µs faster than
libvma with few
connections → gap
grows for many
connections

• hadroNIO (JUCX) starts
well, but latency
increases fast with
rising connection count
→ ends slower than
Ethernet

Evaluation 13/19



JUCX vs. Infinileap

• Why does Infinleap scale so much better?
• Minimal time spent in native code
• No allocation of objects or GlobalRefs in native code
• Less upcalls

• UCX may process small messages directly (blocking), without calling a callback
• JUCX calls the callback manually in these cases

• JNI vs FFI performance differences

Evaluation 14/19



Throughput (Netty with 16-byte messages)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Connections

0
50

100
150
200
250
300
350
400
450
500
550

Th
ro

ug
hp

ut
 in

 M
By

te
/s

Ethernet
hadroNIO (Infinileap)

hadroNIO (JUCX) libvma

• hadroNIO yields
best throughput →
performs well with
Infinileap and JUCX

• libvma does not
offer a huge
advantage over
Ethernet

Evaluation 15/19



Throughput (Netty with 1-KiB messages)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Connections

0
1
2
3
4
5
6
7
8
9

10
11
12

Th
ro

ug
hp

ut
 in

 G
By

te
/s

Ethernet
hadroNIO (Infinileap)

hadroNIO (JUCX) libvma
• Only hadroNIO can

saturate the
hardware

• Infinileap offers
more stable
performance than
JUCX

• libvma performs
worse than
Ethernet

Evaluation 16/19



Evaluation

Cluster setup (HHU)

CPU Intel Xeon Silver 4216 (2.10GHz, 16 Cores/32 Threads)
RAM 64 GiB
NIC Mellanox MT27800 (ConnectX-5) 100 Gbit/s InfiniBand
OS CentOS Stream 8

rdma-core 42.0
Java OpenJDK 19.0.1
UCX 1.13.1

Back-to-back connection (no switch)

Evaluation 17/19



Latency (Netty RTT with 16-byte messages - Average values)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Connections

5
10
15
20
25
30
35
40
45

La
te

nc
y 

in
 

s
IP over InfiniBand hadroNIO (Infinileap) hadroNIO (JUCX)

• Minimum latency:
3.2 µs

• hadroNIO
(Infinileap) offers
less than 5 µs RTT
with up to 20
connections

Evaluation 18/19



Conclusion & Future Work



Conclusion & Future Work

• hadroNIO accelerates NIO completely in user space
• Offers better latency and throughput than libvma
• 100 GBit/s hardware can be saturated by NIO applications
• Infinileap scales much better than JUCX

Future Work:

• Scalability tests in OCI (Epoll overhead?)
• Benchmarks with applications and libraries based on NIO
• Successful tests have been done with gRPC and Apache Ratis

Infinileap and hadroNIO are sponsored by Oracle and supported by Oracle Cloud
credits provided by the Oracle for Research program.

Conclusion & Future Work 19/19


	Motivation
	Related Work
	Implementation
	Evaluation
	Conclusion & Future Work

