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Motivation

Java NIO provides a modern and easy-to-use API for blocking and non-blocking
communication → Many projects are built using NIO

Networking Frameworks Distributed Databases Computing Frameworks

Netty Apache Cassandra Apache Spark

Drawback: NIO relies on classic Java Sockets → Ethernet
On many HPC and cloud systems, you are stuck with Gigabit Ethernet and not

able to benefit from high speed transports (e.g. InfiniBand)
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Motivation

Solution: Build our own NIO implementation (including SelectorProvider,
Selector, SelectionKey, SocketChannel and ServerSocketChannel) -> Use a

high speed transport, such as InfiniBand

Unified Communication X (UCX) provides a single API for many transports (e.g.
InfiniBand, Shared Memory, NVLink, ...)

=⇒ Use UCX as communication backend for our NIO implementation
(Project title: hadroNIO)
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Related Work

Alternative solutions accelerate traditional sockets → NIO relies on sockets and
can also be accelerated by these solutions

IP over InfiniBand (IBoIP)

• Kernel driver, exposing InfiniBand devices as standard network interfaces
• Transparently usable by applications
• Uses the kernel’s network stack (Context switching, CPU resources)

libvma

• Open source library, developed by Mellanox
• Preloaded to socket-based applications (LD_PRELOAD)
• Full kernel bypass using native ibverbs
• Requires elevated privileges (CAP_NET_RAW or root)
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Related Work

Java Sockets over RDMA (JSOR)

• Developed by IBM → Only available in proprietary J9 JVM
• Full kernel bypass via RDMA
• Has shown promising results, but has problems in multi-threaded

applications and stuck connections
• Not supported anymore in IBM SDK 11 (uses OpenJ9)

Sockets Direct Protocol (SDP)

• Full kernel bypass via RDMA
• Included in OFED and introduced into the JDK with Java 7
• Support has officially ended (not included in OFED since version 3.5)
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Related Work

netty

Default NIO

Sockets

libvmaKernel

IP over
InfiniBand

Network Interface Card

TCP/IP Stack

hadroNIO

JUCX/
Infinileap

UCX

Java space

Native space

Application

• Many (successful) attempts in the
past, but only IPoIB and libvma are
still actively supported

• libvma is the only socket-based
solution offering kernel bypass but
requires elevated rights and can
be complex to configure

• hadroNIO offers kernel bypass via
UCX and works completely in user
space (no special privileges
needed)
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Architecture

SocketChannel Selector

hadroNIO

ServerSocketChannel

JUCX/Infinileap

Endpoint WorkerCallback
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Java Application

Ethernet Infiniband Shared Memory...
Hardware

Java space

Native space UCX

• UCX is written in C/C++, but
provides JUCX, a Java binding via
JNI

• Endpoint abstracts one
destination of a connection →
Connects to a remote Endpoint

• Worker can represent multiple
network resources with their
Progress Engine

• Worker.progress() needs to be
called for send/receive requests to
be finished (→ Callback)
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Interfacing between NIO and JUCX

Problem:

• UCX communication is asynchronous → Buffers may not be altered by the
application, while a read/write is in progress

• After a call to SocketChannel.write(ByteBuffer buffer), the buffer may be
altered by the application

Solution: Use an intermediate buffer

• SocketChannel.write(ByteBuffer buffer) copies the the data into the
intermediate buffer

• UCX read/write methods only work on the intermediate buffer
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Send

Send Buffer: 1 MiB

SocketChannel.write(ByteBuffer source)

Source Buffer: 4 KiB

1. Claim 4 KiB of space

2. Copy source buffer
into send buffer

Copied Buffer: 4 KiB

3. Invoke an async send
via UCX

4. Return to application

UCX send (async) UCX Callback
5. Callback is
invoked when

finished sending

6. Free claimed space
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Receive

Receive Buffer: 1 MiB

SocketChannel.read(ByteBuffer destination)

Destination Buffer

Slice: 32 KiB

2. Invoke async
receives via UCX

UCX receive (async) UCX Callback
3. Callback is
invoked when

finished receiving 4. Notify SocketChannel

...Slice: 32 KiB

5. Copy buffer slice
into destination buffer

1. Allocate slices
inside receive buffer

fillReceiveBuffer()

Implementation 9/19



Busy Polling vs. Epoll

• Busy polling UCX workers offers best performance with thread count <=

CPU count, but does not scale well
• Selector can use epoll() to let thread sleep while no event is incoming
• Only using epoll() causes a high increase in latency
• Solution: Use busy polling for a short time (e.g 20 µs) and fallback to
epoll() if no event happens

Selector can be configured to use 1 of 3 modes: Busy Polling, Epoll and Dynamic

Implementation 10/19



Current project state

2� Accelerating netty works
2� Accelerating gRPC works
2� Accelerating Apache Ratis works
2� Busy Polling & Epoll support
2� Works with JUCX and Infinileap
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Evaluation

Cluster setup (OCI)

CPU 2x Intel Xeon Gold 6154 CPU (3.00GHz, 18 Cores/36 Threads)
RAM 384 GiB
NIC Mellanox MT28800 (ConnectX-5) 100 Gbit/s Ethernet
OS Oracle Linux 8

OFED MLNX 5.4
Java OpenJDK 19.0.1
UCX 1.13.1

libvma 9.8.1
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Latency (Netty RTT with 16-byte messages - Average values)
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hadroNIO (JUCX) libvma • Ethernet cannot reach
below 25 µs

• hadroNIO (Infinileap)
0.5 µs faster than
libvma with few
connections → gap
grows for many
connections

• hadroNIO (JUCX) starts
well, but latency
increases fast with
rising connection count
→ ends slower than
Ethernet
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JUCX vs. Infinileap

• Why does Infinleap scale so much better?
• Minimal time spent in native code
• No allocation of objects or GlobalRefs in native code
• Less upcalls

• UCX may process small messages directly (blocking), without calling a callback
• JUCX calls the callback manually in these cases

• JNI vs FFI performance differences
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Throughput (Netty with 16-byte messages)
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• hadroNIO yields
best throughput →
performs well with
Infinileap and JUCX

• libvma does not
offer a huge
advantage over
Ethernet
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Throughput (Netty with 1-KiB messages)
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• Only hadroNIO can

saturate the
hardware

• Infinileap offers
more stable
performance than
JUCX

• libvma performs
worse than
Ethernet
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Evaluation

Cluster setup (HHU)

CPU Intel Xeon Silver 4216 (2.10GHz, 16 Cores/32 Threads)
RAM 64 GiB
NIC Mellanox MT27800 (ConnectX-5) 100 Gbit/s InfiniBand
OS CentOS Stream 8

rdma-core 42.0
Java OpenJDK 19.0.1
UCX 1.13.1

Back-to-back connection (no switch)
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Latency (Netty RTT with 16-byte messages - Average values)
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• Minimum latency:
3.2 µs

• hadroNIO
(Infinileap) offers
less than 5 µs RTT
with up to 20
connections
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Conclusion & Future Work

• hadroNIO accelerates NIO completely in user space
• Offers better latency and throughput than libvma
• 100 GBit/s hardware can be saturated by NIO applications
• Infinileap scales much better than JUCX

Future Work:

• Scalability tests in OCI (Epoll overhead?)
• Benchmarks with applications and libraries based on NIO
• Successful tests have been done with gRPC and Apache Ratis

Infinileap and hadroNIO are sponsored by Oracle and supported by Oracle Cloud
credits provided by the Oracle for Research program.
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