
Accessing InfiniBand hardware from Java using
the Foreign Function & Memory API

Filip Krakowski, Fabian Ruhland, Michael Schöttner

Department of Computer Science
Heinrich Heine University Düsseldorf

18/04/2023

Icons made by Smashicons from www.flaticon.com

Motivation

Motivation

Many data processing and computation frameworks are written in the Java
programming language or run on the Java Virtual Machine.

Spark™ Flink Storm

Samza Mahout

Using traditional sockets these frameworks
produce computational overhead regarding the transport layer

due to context switches / system calls and buffer copies.

Motivation 1/26

Motivation

InfiniBand eliminates these problems by allowing applications to bypass the
kernel and read/write remote memory directly in a zero-copy fashion.

Remote direct memory access (RDMA) is not limited to Random Access Memory

NVMe GPU

Motivation 2/26

Kernel Bypass

Unlike Ethernet, the InfiniBand protocol stack is implemented within hardware

Application

Kernel

Controller

Memory Application

Kernel

Controller

Memory

System calls are not necessary, so the kernel can be bypassedMotivation 3/26

Kernel Bypass

Low latencies
(< 0.7 µs)

High troughput
(400 Gb/s)

JDK Support

Current JDK implementations do not provide support for InfiniBand hardware

Controller?

A library is required for interfacing with InfiniBand hardware

Motivation 4/26

JDK Support

The Unified Communication X (UCX) 1 Library offers simple access to
InfiniBand hardware, provides easy-to-use abstractions and is written in C.

1https://github.com/openucx/ucx
Motivation 5/26

Native Interface

Native Interface

Two options for interfacing with native code from Java

Java Native Interface 2

(since JDK 1.1 - 1997)
Project Panama 3

(since JDK 16 - 2021)

“ We are improving and enriching the connections between the Java virtual machine and
well-defined but "foreign" (non-Java) APIs, including many interfaces commonly used by
C programmers.”

— Oracle, Project Panama 3

2https://docs.oracle.com/javase/8/docs/technotes/guides/jni
3https://openjdk.java.net/projects/panama

Native Interface 6/26

Native Interface

In our previous project neutrino4, we explored creating
so called "Proxy Objects" for accessing structs in native space.

handle
(virtual address) native memory

Unsafe API

Proxy Object Struct

Using sun.misc.Unsafe5, these proxy objects can write and read to their
associated structs fields (in off-heap memory) directly.

4https://github.com/hhu-bsinfo/neutrino
5http://www.docjar.com/docs/api/sun/misc/Unsafe.html

Native Interface 7/26

https://github.com/hhu-bsinfo/neutrino
http://www.docjar.com/docs/api/sun/misc/Unsafe.html

Native Interface

Proxy objects create a mapping for struct fields using their names.

AddressHandle.java Java

1 @LinkNative("ibv_ah")
2 public class AddressHandle extends Struct {
3 private final Context ctx = referenceField("context");
4 private final ProtectionDomain pd = referenceField("pd");
5 private final NativeInteger handle = integerField("handle");
6 }

verbs.h C

1 struct ibv_ah {
2 struct ibv_context *context;
3 struct ibv_pd *pd;
4 uint32_t handle;
5 }

A lookup table must be managed by hand in native space.
Native Interface 8/26

Native Interface

The Java Native Interface requires handwritten "glue code" 6.

Application

library_jni.so

library.so

MethodHandle

Custom Class

Java Native Interface

Project Panama

handwritten handwritten

generated

Java Space Native Space

Project Panama automatically generates bindings through jextract 7
6https://en.wikipedia.org/wiki/Glue_code
7https://github.com/openjdk/jextract

Native Interface 9/26

Native Interface

We provide a Gradle plugin 8 to automate jextract’s process
build.gradle Groovy

1 plugins {
2 id "io.github.krakowski.jextract"

version "0.3.1"
3 }
4
5 jextract {
6 header("${project

.projectDir}/src/main/c/stdio.h")
{

7 libraries = ['stdc++']
8 targetPackage = 'org.unix'
9 className = 'Linux'

10 functions = ['printf']
11 }
12 }

NativeHelloWorld.java Java

1 import static org.unix.Linux.*;
2
3 public final class NativeHelloWorld {
4
5 public static void main(String... args) {
6 try (var session =

MemorySession.openConfined()) {
7 var format =

session.allocateUtf8String("Hello %s");
8 var value =

session.allocateUtf8String("World");
9 printf(format, value.address());

10 }
11 }
12 }

8https://github.com/krakowski/gradle-jextract

Native Interface 10/26

Framework Design

Framework Design

Using the Foreign Function & Memory API9, we implement an object-oriented
framework called Infinileap10 wrapping the native UCX library.

Java Space

UCX

Native Space

downcalls

upcalls

memory

base class

MemorySegment

NativeObject

jextract bindings

Context

jextract bindings

Worker

jextract bindings

Endpoint

Fo
re
ig
n

Fu
nc
ti
on
 &

Me
mo
ry
 A
PI

9https://openjdk.org/jeps/424
10https://github.com/hhu-bsinfo/infinileap

Framework Design 11/26

https://github.com/hhu-bsinfo/infinileap

Native Objects

NativeObject.java Java

1 public class NativeObject {
2 private final MemorySegment segment;
3 protected NativeObject(MemorySegment segment) { ... }
4 protected NativeObject(MemoryAddress address, MemoryLayout layout) { ... }
5 protected NativeObject(MemoryAddress address, long byteSize) { ... }
6 }

• All relevant UCX
structs are wrapped
inside a class having
the same name.

• User can provide
MemorySession

RequestParameters.java Java

1 public class RequestParameters extends NativeObject {
2 public RequestParameters() {
3 this(MemorySession.openImplicit());
4 }
5
6 public RequestParameters(MemorySession session) {
7 super(ucp_request_param_t.allocate(session));
8 }
9 }

Framework Design 12/26

Flags

UCX makes heavy use of
flags within its provided
structs.

Infinileap wraps these
flags and encapsulates
them in enum values
implementing a common
interface, so that they
can be passed as varargs
to our API.

LongFlag.java Java

1 @FunctionalInterface
2 public interface LongFlag {
3 long getValue();
4 }

RequestParameters.java Java

1 public enum Field implements LongFlag {
2 CLIENT_ADDR(UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ADDR()),
3 CLIENT_ID(UCP_CONN_REQUEST_ATTR_FIELD_CLIENT_ID());
4
5 private final long value;
6 Field(int value) { this.value = value; }
7
8 @Override
9 public long getValue() { return value; }

10 }

Framework Design 13/26

Upcalls

Callbacks / Upcalls are provided as functional interfaces, which
the user may implement. The framework calls upcallStub and

stores the MemorySegment reference to prevent gargabe collection.

SendCallback.java Java

1 @FunctionalInterface
2 public interface SendCallback extends ucp_send_nbx_callback_t {
3 void onRequestSent(long request, Status status, MemoryAddress data);
4
5 @Override
6 default void apply(MemoryAddress request, byte status, MemoryAddress data) {
7 onRequestSent(request.toRawLongValue(), Status.of(status), data);
8 }
9

10 default MemorySegment upcallStub() {
11 return ucp_send_nbx_callback_t.allocate(this, MemorySession.openImplicit());
12 }
13 }

Framework Design 14/26

Atomic Operations

UCX enables atomic operations (e.g compare and swap) on remote memory.
Infinileap abstracts this process by implementing so called "Native Primitives"

which provide typed (int , long , ...) access to the underlying memory.

NativeLong.java Java

1 public final class NativeLong extends NativePrimitive {
2 private static final int SIZE = Long.BYTES;
3 public NativeLong() { this(MemorySession.openImplicit()); }
4 public NativeLong(MemorySession session) { this(0, session); }
5 public NativeLong(long initialValue, MemorySession session) {
6 super(MemorySegment.allocateNative(SIZE, session), DataType.CONTIGUOUS_64_BIT);
7 set(initialValue);
8 }
9

10 private NativeLong(MemorySegment segment) {super(segment, DataType.CONTIGUOUS_64_BIT);}
11 public void set(long value) {segment().set(ValueLayout.JAVA_LONG, 0L, value);}
12 public long get() {return segment().get(ValueLayout.JAVA_LONG, 0L);}

Framework Design 15/26

Atomic Operations

Native Primitives can be compared to the JDK’s Atomic { Integer , Long , ...}
classes.

AtomicAddExample.java Java

1 MemoryDescriptor descriptor = /* Received from other network participant */
2 RemoteKey remoteKey = endpoint.unpack(descriptor);
3
4 // Create a memory segment for atomic operations
5 var memorySegment = context.allocateMemory(Long.BYTES);
6 var nativeLong = NativeLong.map(memorySegment.segment());
7 nativeLong.set(32);
8
9 long request = endpoint.atomic(AtomicOperation.ADD, nativeLong,

descriptor.remoteAddress(), remoteKey, new
RequestParameters().setDataType(nativeLong.dataType()));

10
11 Requests.await(worker, request);

Framework Design 16/26

Messaging Example

Sender.java Java

1 final var buffer = MemorySegment.allocateNative(64L, MemorySession.openImplicit();
2
3 long request = endpoint.sendTagged(buffer);
4 Requests.await(worker, request); // busy-spin until request finishes
5 Requests.release(request); // clean up request

Receiver.java Java

1 final var buffer = MemorySegment.allocateNative(64L, MemorySession.openImplicit());
2
3 long request = worker.receiveTagged(buffer);
4 Requests.await(worker, request); // busy-spin until request finishes
5 Requests.release(request); // clean up request
6
7 MemoryUtil.dump(buffer, "Buffer"); // Print content

Full examples are available in our GitHub repository 11

11https://github.com/hhu-bsinfo/infinileap/tree/master/example

Framework Design 17/26

Evaluation

Experiment Setup

CPU Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz (22 MB Cache)
RAM 4x Micron Technology 36ASF2G72PZ-2G6E1 16GB
NIC Mellanox Technologies MT27800 Family [ConnectX-5] (100Gbit/s)

Figure 1: System specifications of the hardware used in all experiments.

All benchmarks are implemented using the Java Microbenchmark Harness
(JMH)12 Framework. The benchmark’s source code is available on GitHub13

All measurements shown are average values with standard deviation error bars

12https://github.com/openjdk/jmh
13https://github.com/hhu-bsinfo/infinileap

Evaluation 18/26

Benchmark Sequence

PHASE 1 Initialize the server instance and set
the number of threads.

1. Send a START_RUN command to tell the
server to start the next or first run.

2. Instruct the server to start a specified
number of worker threads by sending
a SET_THREADS command.

Client

(JMH) Server

START_RUN

SET_THREADS

SET_DETAILS

FINISH_RUN

SHUTDOWN

RUN_BENCHMARK

PHASE 1

PHASE 2

PHASE 3

PHASE 4

Evaluation 19/26

Benchmark Sequence

PHASE 2 JMH invokes benchmark methods and
makes measurements.

1. Inform the server about the
benchmark details (operation count,
buffer size, etc.) by sending a
SET_DETAILS command.

2. Execute the specified number of
benchmark method invocations until a
configured time has expired.

3. Synchronize with the server to let it
receive new commands.

4. Repeat PHASE 2 until all configured
buffer sizes have been measured; else
go to PHASE 3

Client

(JMH) Server

START_RUN

SET_THREADS

SET_DETAILS

FINISH_RUN

SHUTDOWN

RUN_BENCHMARK

PHASE 1

PHASE 2

PHASE 3

PHASE 4

Evaluation 20/26

Benchmark Sequence

PHASE 3 - Resources are released.
1. Send a FINISH_RUN command to tell

the server to release its resources and
terminate all worker threads.

2. Start a new run with a different
number of threads by reentering
PHASE 1 or move on to PHASE 4.

Client

(JMH) Server

START_RUN

SET_THREADS

SET_DETAILS

FINISH_RUN

SHUTDOWN

RUN_BENCHMARK

PHASE 1

PHASE 2

PHASE 3

PHASE 4

Evaluation 21/26

Benchmark Sequence

PHASE 4 - Benchmark ends.
1. Send a SHUTDOWN command to tell the

server it should terminate.
Alternatively another benchmark run
may be started by sending a
START_RUN command and starting
again from the beginning.

Client

(JMH) Server

START_RUN

SET_THREADS

SET_DETAILS

FINISH_RUN

SHUTDOWN

RUN_BENCHMARK

PHASE 1

PHASE 2

PHASE 3

PHASE 4

Evaluation 22/26

Results

Figure 2: Average read operation (solid line)
and network (dashed line) throughput

Figure 3: Average write operation (solid line)
and network (dashed line) throughput

Evaluation 23/26

Results

Figure 4: Average send operation (solid line)
and network (dashed line) throughput

Figure 5: Average Round-trip latency for RDMA
write, RDMA read and send operations

Evaluation 24/26

Results

Figure 6: Average operation latency for all
UCX-supported atomic operations and data

sizes
Figure 7: Operation latency for all supported

atomic operations by percentiles

Evaluation 25/26

Conclusion & Lookout

Conclusion & Lookout

• Project Panama’s jextract tool enables easy integration of existing C
libraries (direct call vs. glue code).

• Using the Foreign Function API in the "hot path" yields good results
regarding performance.

• Thanks to the safety features of the Foreign Memory API, "off-by-one" errors
are detected earlier in the development cycle.

• Higher-Level frameworks like Netty14 can be accelerated using Infinileap.

14https://netty.io/

Conclusion & Lookout 26/26

https://netty.io/

Questions

	Motivation
	Native Interface
	Framework Design
	Evaluation
	Conclusion

