Jump to contentJump to search

Jannik Dunkelau

Contact Information

Heinrich Heine University Düsseldorf
Institut für Informatik
Universitätsstraße 1
D-40225 Düsseldorf

Phone: +49 211 81-12635

Research Interests

  • Integration of formal methods with machine learning and artificial intelligence
    • Machine learning for improvement of formal methods
    • Verification of artificial neural networks and machine learning systems
  • Symbolic and explainable AI
  • Fairness-aware Machine Learning

Past Courses

  • Overview of Artificial Intelligence (Seminar, Summer Term 2022)
  • Overview of Artificial Intelligence (Seminar, Summer Term 2021)
  • Overview of Artificial Intelligence (Seminar, Summer Term 2020)
  • Overview of Artificial Intelligence (Seminar, Summer Term 2019)
  • Safety-Critical Systems (Tutorial, Winter Term 2018)
  • Programming Project I (Tutorial, Summer Term 2018)

Concluded Theses

I supervised the following theses.




Davin Holten Validierung von Reinforcement-Learning-Agenten mittels Trace-Analyse Bachelor Thesis
Matvey Lorkish Fair and Transparent Decision Making With Decision Tree Evolution Bachelor Thesis
Mariama Marfo Bestimmung von Proxi-Variablen des geschützten Attributs und deren Einfluss auf die Klassifikationsvorhersage in Fair Machine Learning Bachelor Thesis
Heiko Kauschke The CART of Prolog: Implementierung von Entscheidungsbäumen mittels logischer Programmierung Bachelor Thesis
Simon Dräger Loss Function Variation in Supervised Deep Learning:
The Classification Case
Bachelor Thesis
Konrad Brixius Machine Learning zur Klassifikation bikuspider Aortenklappen anhand von EKG-Daten Bachelor Thesis
Lena Hilger Bereinigung der Trainingsdaten für faires Machine Learning: Anwendung eines Genetischen Algorithmus Bachelor Thesis
Lian Remme Performance Fuzzing for ProB Using Reinforcement Learning Bachelor Thesis
Timo Bolte Erkennung von Prolog-Code-Klonen mit Hilfe von Word Embedding Learning Bachelor Thesis
Simon Scheel Constraint Solving in der Dienstplangestaltung: Eine Java Adaption des Nurse Scheduling Problems Bachelor Thesis
Kevin Schröder Machine-Learning-Verfahren zur Vorhersage von Belohnungspräferenzen anhand von EEGs Master Thesis
Melina Richard Bestimmung des Grades der Aortenklappenstenose in EKG-Daten mittels Machine Learning Bachelor Thesis
Christian Karamann Mit XAI der Black Box an den Kragen: Ein Überblick über Techniken zur Erklärungsfindung in Machine Learning Bachelor Thesis
Dominik Brandt Implementing General Game Playing in Prolog: Applying MCTS to Three Examples Bachelor Thesis
Tim Richter Autoencoding ProB Constraints for Classification Tasks Bachelor Thesis
Leo Baldus Backend Selection for ProB Based on Ranked Runtime Predictions Bachelor Thesis
Benedikt Jung Vergleich fairer Machine-Learning-Algorithmen Bachelor Thesis
Aycan Aytan The Preference Beyond: Applying Deep Forests to Predict Individual Reward Preferences From Reward-Locked ERPs Bachelor Thesis
Jessica Petrasch The Decision Does Not Fall Far from the Tree: Automatic Configuration of Predicate Solving Master Thesis

Open topics for bachelor and master theses can be found here (German).




  • Jannik Dunkelau, Manh Khoi Duong
    Towards Equalised Odds as Fairness Metric in Academic Performance Prediction.
    In 2nd Workshop on Fairness, Accountability, and Transparency in Educational Data, 2022.


  • Jannik Dunkelau, Leo Baldus
    Ranking Model Checking Backends for Automated Selection via Classification and Regression Learning.
    In 3rd Workshop on Artificial Intelligence and Formal Verification, CEUR Workshop Proceedings, 2987, 83--89, 2021.




  • Machine Learning and AI Techniques for Automated Tool Selection for Formal Methods.
    In Proceedings of the PhD Symposium at iFM’18 on Formal Methods:Algorithms, Tools and Applications, Research Report, 483, University of Oslo, 2018.
Responsible for the content: