Zum Inhalt springenZur Suche springen
Foto von Martin Lercher

Lehrstuhlinhaber

Prof. Dr. Martin Lercher
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.36
+49 211 81-10546
+49 211 81-15767


Foto von Anja Walge

Sekretariat

Anja Walge
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.35
+49 211 81-12163
+49 211 81-15767

Sprechzeiten

Mo. - Do.
10 - 12 Uhr


Foto von Thomas Spitzlei

Administrator

Thomas Spitzlei
Universitätsstr. 1
Gebäude: 25.12
Etage/Raum: 02.48
+49 211 81-11632
+49 211 81-11638


Foto von Hugo Dourado

wissenschaftlicher Mitarbeiter

Dr. Hugo Dourado
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.33
+49 211 81-11651


Foto von Tin Yau Pang

wissenschaftlicher Mitarbeiter

Dr. Tin Yau Pang
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.33
+49 211 81-11651


Tin did his PhD dissertation studying the bacterial genomes, analysing how horizontal transfer of DNA segments between bacteria facilitates their evolution and shapes their scaling laws. Thereafter, Tin continues his work on bacterial genomics, develops model to describe how DNA transfer shapes nucleotide substitution, and applies this model on the phylogenetic tree reconstruction of closely related bacterial strains that experience frequent DNA transfer.

In addition, Tin also studies metabolism in bacteria, exploring how adaptive evolution through DNA transfer constrains the network properties of metabolism, and how the limited space in the cytoplasm constrains the resource allocation among enzymes, ribosomes, and other molecular machineries in a bacterial cell.

Foto von Mayo Röttger

wissenschaftlicher Mitarbeiter

Dr. Mayo Röttger
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.34
+49 211 81-12162


Foto von Deniz Sezer

wissenschaftlicher Mitarbeiter

Dr. Deniz Sezer
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.25
+49 211 81-13185


Foto von Xiao-Pan Hu

Doktorand

Xiao-Pan Hu
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.33
+49 211 81-11651


Doktorand

Alexander Kroll
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.33


Knowledge about the Michaelis constant KM and the turnover number kcat for enzyme-catalyzed reactions is required for advanced models of cellular metabolis. However, since the experimental measurement of kcat and KM is difficult and time consuming, no experimental data exists for many relevant enzymes. To approach this problem, I am trying to predict these values using methods from Machine and Deep Learning. To train different models, I use information about enzyme structures, substrates, assay conditions, and metabolic network properties.

I was involved in organization and exercise groups for students in the following lectures:
- "Algorithmen und Datenstrukturen" (winter Semester 2019/2020)
- "Rechnerarchitektur" (sommer semester 2019)

Foto von Antonio Rigueiro

Doktorand

Antonio Rigueiro
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.38
+49 211 81-13716


CAM (Crassulacean Acid Metabolism) is a major photosynthetic pathway that has evolved convergently in many plant families facing water-restricted environments. This pathway is able to combine high production rates with extreme water efficiency, attracting interest from basic and applied researchers. In my project I use modeling and computer simulations to better understand its central mechanisms and the paths followed in its evolution.

Foto von Swastik Mishra

Doktorand

Swastik Mishra
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.38
+49 211 81-13716


Prokaryotic genomes are fluid and change rapidly over evolutionary time, because of the prevalence of horizontal gene transfer (HGT) among even distantly related lineages. I am working on quantitative and stochastic modeling of HGT in the broader context of how prokaryotes have contributed to the origin of eukaryotes. This also involves gaining a better understanding of what characteristics of genes and genomes boost or hinder HGT.

Foto von Peter Schubert

Doktorand

Peter Schubert
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.33
+49 211 81-11651


I plan on constructing large-scale kinetic models and use them to determine metabolic states, including metabolite/protein concentrations, with higher accuracy compared to existing modeling approaches. Starting from available reconstructed genome-scale models (FBA-models), we would add enzymes, kinetics and protein synthesis. Models would be simulated using concepts of balanced growth theory. The work follows community standards of systems biology to improve quality and reusability.

Masterstudent

Maxim Chazam
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.31
+49 211 81-15771


Masterstudent

Katharina Schwieren
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.31
+49 211 81-15771


Foto von Käthe Weit

Masterstudent

Käthe Weit
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.31
+49 211 81-15771


Foto von Ina Ott-Forsyth

SHK

Ina Ott-Forsyth
Universitätsstr. 1
Gebäude: 25.02
Etage/Raum: O2.31
+49 211 81-15771


Verantwortlichkeit: